Power budget of direct-detection ultra-dense WDM-Nyquist-SCM PON with low-complexity SSBI mitigation

2017 ◽  
Vol 36 ◽  
pp. 255-264 ◽  
Author(s):  
Ricardo O.J. Soeiro ◽  
Tiago M.F. Alves ◽  
Adolfo V.T. Cartaxo
Author(s):  
Aditya Kakkar ◽  
Jaime Rodrigo Navarro ◽  
Xiaodan Pang ◽  
Oskars Ozolins ◽  
Richard Schatz ◽  
...  

2020 ◽  
Vol 10 (21) ◽  
pp. 7690
Author(s):  
Hichem Mrabet

The purpose of this article is to propose a new configuration based on OCDMA and Fast-OFDM techniques for access network applications. A hybrid intensity modulation with direct detection, fast orthogonal frequency-division multiplexing–code division multiplexing access (IM/DD Fast-OFDM-CDMA) system is analytically and numerically evaluated for an amplifier-free access network. Therefore, system performance is analytically investigated in terms of bit error rate/Q-factor as a function of simultaneous users, fiber length and launched optical power. Firstly, the proposed analytical model includes the overlapping effect among OFDM subcarriers, the peak-to-average power ratio (PAPR), and multiple access interference (MAI). Secondly, a simulation setup is performed, allowing four simultaneous users operating at 40 Gb/s in a passive optical network (PON) context. Furthermore, a power budget analysis is made between IM/DD Fast-OFDM-CDMA, all-optical IM/DD OFDM-CDMA (IM/DD AO-OFDM-CDMA) and OCDMA wavelength division multiplexing (OCDMA-WDM) configurations. It is shown that at 40 Gb/s and by using 2D-hybrid coding (2D-HC), the maximum achievable transmission-reach of IM/DD Fast-OFDM-CDMA is 142 km, which is 34 km and 60 km higher than those provided by the IM/DD AO-OFDM-OCDMA and OCDMA-WDM PON configurations, respectively.


Author(s):  
João Paulo Carmo ◽  
José H. Correia

This chapter cover the following topics: • the focus and application of the wireless sensor network; • the implications of the radio system; • the test bed implementation of the proposed low cost wireless sensors networks; • the wireless link power budget, coding and data recovering; • performance metrics of the wireless sensors networks; • cost analysis versus other technologies (wired and emerging wireless).


2020 ◽  
Vol 10 (17) ◽  
pp. 6106
Author(s):  
Aleksejs Udalcovs ◽  
Toms Salgals ◽  
Lu Zhang ◽  
Xiaodan Pang ◽  
Anders Djupsjöbacka ◽  
...  

While infrastructure providers are expanding their portfolio to offer sustainable solutions for beyond 10 Gbps in the access segment of optical networks, we experimentally compare several modulation format alternatives for future passive optical networks (PONs) aiming to deliver 25+ Gbps net-rates. As promising candidates, we consider the intensity modulation direct detection (IM/DD) schemes such as electrical duobinary (EDB) and 4-level and 8-level pulse amplitude modulations (PAM-4/8). They are more spectrally efficient than the conventional non-return-to-zero on-off-keying (NRZ-OOK) used in current 10G PONs. As we move to higher rates, digital equalization enhances the performance by smoothening the systems imperfection. However, the impact that such equalization has on the optical power budget remains unclear. Therefore, in this article, we fairly compare the optical power budget values of a time division multiplexed PON (TDM-PON) exploiting a linear digital signal equalization at the receiver side. We consider the conventional PON configuration (20 km of single-mode fiber (SMF), 1:N optical power splitting) with IM/DD and net-rates above 25 Gbps. Furthermore, we focus on a downstream transmission imposing the bandwidth limitations of 10G components using a digital filter before the detection. The obtained results show that the use of a digital post-equalization with 43 feed-forward (FF) and 21 feedback (FB) taps can significantly improve the signal quality enabling new alternatives and enhancing the optical power budget.


Sign in / Sign up

Export Citation Format

Share Document