Environmental changes in southeastern Amazonia during the last 25,000 yr revealed from a paleoecological record

2012 ◽  
Vol 77 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Barbara Hermanowski ◽  
Marcondes Lima da Costa ◽  
Hermann Behling

New pollen, micro-charcoal, sediment and mineral analyses of a radiocarbon-dated sediment core from the Serra Sul dos Carajás (southeast Amazonia) indicate changes between drier and wetter climatic conditions during the past 25,000 yr, reflected by fire events, expansion of savanna vegetation and no-analog Amazonian forest communities. A cool and dry last glacial maximum (LGM) and late glacial were followed by a wet phase in the early Holocene lasting for ca. 1200 yr, when tropical forest occurred under stable humid conditions. Subsequently, an increasingly warm, seasonal climate established. The onset of seasonality falls within the early Holocene warm period, with possibly longer dry seasons from 10,200 to 3400 cal yr BP, and an explicitly drier phase from 9000 to 3700 cal yr BP. Modern conditions with shorter dry seasons became established after 3400 cal yr BP. Taken together with paleoenvironmental evidence from elsewhere in the Amazon Basin, the observed changes in late Pleistocene and Holocene vegetation in the Serra Sul dos Carajás likely reflect large-scale shifts in precipitation patterns driven by the latitudinal displacement of the Inter-Tropical Convergence Zone and changes in sea-surface temperatures in the tropical Atlantic.

2001 ◽  
Vol 55 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Marie-Pierre Ledru ◽  
Renato Campello Cordeiro ◽  
José Maria Landim Dominguez ◽  
Louis Martin ◽  
Philippe Mourguiart ◽  
...  

AbstractNew pollen data from a core at Lagoa do Caçó, Maranhão state, Brazil (2°58′S 43°25′W; 120 m elevation), show higher frequencies of Podocarpus at the end of the Pleistocene than today. The increase in Podocarpus, which follows the successive increase of various pioneer species such as Didymopanax, Melastomataceae/Combretaceae, and Cecropia, implies a progressive late-glacial increase of moist and cool climatic conditions. A comparable increase in Podocarpus is found in other lowland records in Amazonia. A review of published pollen data from Amazonia suggests that the moisture source was from the southeast. By contrast, present-day moisture comes from the tropical Atlantic and from the Amazon basin, with its convective precipitation. The likely cause for the southeastern moisture source between ca. 15,000 and 14,500 cal yr B.P. was enhanced polar (Antarctic) advection that reached low latitudes and maintained year-round the meteorological equator in its austral-winter position at northern latitudes or reduced drastically its southward summer displacement. This hypothesis is consistent with marine and ice core records.


2019 ◽  
Vol 15 (2) ◽  
pp. 713-733 ◽  
Author(s):  
Johannes Hepp ◽  
Lorenz Wüthrich ◽  
Tobias Bromm ◽  
Marcel Bliedtner ◽  
Imke Kathrin Schäfer ◽  
...  

Abstract. Causes of the Late Glacial to Early Holocene transition phase and particularly the Younger Dryas period, i.e. the major last cold spell in central Europe during the Late Glacial, are considered to be keys for understanding rapid natural climate change in the past. The sediments from maar lakes in the Eifel, Germany, have turned out to be valuable archives for recording such paleoenvironmental changes. For this study, we investigated a Late Glacial to Early Holocene sediment core that was retrieved from the Gemündener Maar in the Western Eifel, Germany. We analysed the hydrogen (δ2H) and oxygen (δ18O) stable isotope composition of leaf-wax-derived lipid biomarkers (n-alkanes C27 and C29) and a hemicellulose-derived sugar biomarker (arabinose), respectively. Both δ2Hn-alkane and δ18Osugar are suggested to reflect mainly leaf water of vegetation growing in the catchment of the Gemündener Maar. Leaf water reflects δ2H and δ18O of precipitation (primarily temperature-dependent) modified by evapotranspirative enrichment of leaf water due to transpiration. Based on the notion that the evapotranspirative enrichment depends primarily on relative humidity (RH), we apply a previously introduced “coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach” to reconstruct the deuterium excess of leaf water and in turn Late Glacial–Early Holocene RH changes from our Gemündener Maar record. Our results do not provide evidence for overall markedly dry climatic conditions having prevailed during the Younger Dryas. Rather, a two-phasing of the Younger Dryas is supported, with moderate wet conditions at the Allerød level during the first half and drier conditions during the second half of the Younger Dryas. Moreover, our results suggest that the amplitude of RH changes during the Early Holocene was more pronounced than during the Younger Dryas. This included the occurrence of a “Preboreal Humid Phase”. One possible explanation for this unexpected finding could be that solar activity is a hitherto underestimated driver of central European RH changes in the past.


2020 ◽  
Vol 230 ◽  
pp. 106167 ◽  
Author(s):  
José Antonio López-Sáez ◽  
Rosa M. Carrasco ◽  
Valentí Turu ◽  
Blanca Ruiz-Zapata ◽  
María José Gil-García ◽  
...  

2009 ◽  
Vol 203 (1-2) ◽  
pp. 105-112 ◽  
Author(s):  
Tatjana Boettger ◽  
Achim Hiller ◽  
Frank W. Junge ◽  
Dietrich Mania ◽  
Konstantin Kremenetski

2020 ◽  
Vol 376 (1816) ◽  
pp. 20190724 ◽  
Author(s):  
T. Rowan McLaughlin ◽  
Magdalena Gómez-Puche ◽  
João Cascalheira ◽  
Nuno Bicho ◽  
Javier Fernández-López de Pablo

Successive generations of hunter–gatherers of the Late Glacial and Early Holocene in Iberia had to contend with rapidly changing environments and climatic conditions. This constrained their economic resources and capacity for demographic growth. The Atlantic façade of Iberia was occupied throughout these times and witnessed very significant environmental transformations. Archaeology offers a perspective on how past human population ecologies changed in response to this scenario. Archaeological radiocarbon data are used here to reconstruct demographics of the region over the long term. We introduce various quantitative methods that allow us to develop palaeodemographic and spatio-temporal models of population growth and density, and compare our results to independent records of palaeoenvironmental and palaeodietary change, and growth rates derived from skeletal data. Our results demonstrate that late glacial population growth was stifled by the Younger Dryas stadial, but populations grew in size and density during the Early to Middle Holocene transition. This growth was fuelled in part by an increased dependence on marine and estuarine food sources, demonstrating how the environment was linked to demographic change via the resource base, and ultimately the carrying capacity of the environment. This article is part of the theme issue ‘Cross-disciplinary approaches to prehistoric demography’.


2018 ◽  
Author(s):  
Johannes Hepp ◽  
Lorenz Wüthrich ◽  
Tobias Bromm ◽  
Marcel Bliedtner ◽  
Imke Kathrin Schäfer ◽  
...  

Abstract. The Late Glacial to Early Holocene transition phase and particularly the Younger Dryas period, i.e. the major last cold spell in Central Europe during the Late Glacial, are considered crucial for understanding rapid natural climate change in the past. The sediments from Maar lakes in the Eifel, Germany, have turned out to be valuable archives for recording such paleoenvironmental changes. For this study, we investigated a Late Glacial to Early Holocene sediment core that was retrieved from Lake Gemündener Maar in the Western Eifel, Germany. We analysed the hydrogen (δ2H) and oxygen (δ18O) stable isotope composition of leaf wax-derived lipid biomarkers (n-alkanes C27 and C29) and hemicellulose-derived sugar biomarkers (arabinose), respectively. Both δ2H and δ18O are suggested to reflect mainly leaf water of vegetation growing in the catchment of the Gemündener Maar. This enables the coupling of the results via a δ2H-δ18O biomarker paleohygrometer approach and allows calculating past relative air humidity values, which is the major advantage of the applied approach. Fundamental was the finding that the isotopic enrichment of leaf water due to evapotranspiration depends mainly on relative humidity. We hence use the coupled δ2H-δ18O biomarker approach to reconstruct the deuterium-excess of leaf water and in turn relative air humidity values corresponding to the vegetation period and daytime (RHdv). Most importantly, the results of the coupled δ2H-δ18O biomarker paleohygrometer approach (i) support a two-phasing of the Younger Dryas, i.e. a relative wet phase (on Allerød level) followed by a drier Younger Dryas ending, (ii) do not corroborate overall drier climatic conditions characterising the Younger Dryas or a two-phasing with regard to a first dry and cold Younger Dryas phase followed by a warmer period along with increasing precipitation amounts, and (iii) suggest that the amplitude of RHdv changes during the Early Holocene was more pronounced compared to the Younger Dryas. One possible driver for the unexpected Lake Gemündener Maar RHdv variations could be the solar activity.


2021 ◽  
Author(s):  
Sandra M. Braumann ◽  
Joerg M. Schaefer ◽  
Stephanie M. Neuhuber ◽  
Markus Fiebig

<p>Mountain glaciers and their preserved moraine records provide important insights into periods when climate conditions favored glacier advance or stabilization. Comprehensive mapping of moraines in glacier forefields elucidates the <em>spatial distribution</em> of former ice margins. Numerical age dating of moraines, in turn, constrains the <em>timing </em>of moraine formation intervals. A combination of both methods allows reconstructing the evolution of mountain glaciers across time and space and links today’s alpine geomorphology with climate of the past.</p><p>Here, we present glacier reconstructions from two adjacent valleys in the northern Silvretta Massif (Austrian Alps). Both, the Jamtal and the Laraintal, exhibit multiple prominent moraine ridges outboard the Little Ice Age (LIA) moraine and inboard presumable Late Glacial ice margins. By applying <sup>10</sup>Be surface exposure dating to these moraines, we decipher the response of Silvretta glaciers to the transition from glacial to interglacial climatic conditions.</p><p>Pronounced double-ridge structures in lateral and terminal positions outside the LIA moraines were dated and yield landform ages of 11.3 ±0.8 kyrs (n=12) and 10.8 ±0.8 kyrs (n=9). This age pattern is consistent across both valleys and implies two significant moraine formation intervals during the earliest Holocene that overlap within uncertainties. Additional samples (n=6) were collected along presumable LIA ice margins. Four of them indeed produced LIA ages with three of them suggesting a culmination in the second half of the 18<sup>th</sup> century CE (mean age: 260 ±25 yrs). This result is in good agreement with <sup>10</sup>Be ages from a recent study at an adjacent site, which indicate a LIA advance around 260 ±30 yrs. The remaining two ages coincide with a phase of cooler temperatures and increased precipitation in Europe from the 4<sup>th</sup> to 6<sup>th</sup> century, a climate episode, which is often associated with the fall of the Roman Empire and with the migration period in Europe.</p><p>We interpret the sets of Early Holocene moraines as evidence of brief cold lapses, which punctuated the general warming trend at the beginning of the Holocene, with the Preboreal Oscillation (PBO; c. 11,300 to 11,150 cal BP) being the most prominent one. Moraine formation intervals during the Early Holocene have been reported in the wider Alpine region and at other places in the northern hemisphere (e.g. North America, Scandinavia, Greenland). Annual mean temperatures certainly differed at each of these places, but synchronous phases of glacier advances or stabilization are recorded across the northern hemisphere during the Early Holocene. We suggest that freshwater input into the Atlantic Ocean caused phases of temporary weakening of the Atlantic Meridional Overturning Circulation (AMOC), which lead to episodes of relative cooling in the northern hemisphere. This cooling phases are preserved in the Early Holocene moraine sets that we mapped and dated in the Silvretta region.</p>


2010 ◽  
Vol 29 (2) ◽  
pp. 119-133 ◽  
Author(s):  
Ian Boomer ◽  
Francois Guichard ◽  
Gilles Lericolais

Abstract. During the last glacial phase the Black Sea basin was isolated from the world's oceans due to the lowering of global sea-levels. As sea-levels rose during the latest glacial and early Holocene period, the Black Sea was once again connected to the eastern Mediterranean via the Dardanelles–Marmara–Bosporus seaway. In recent years, trace element and stable isotope analyses of ostracod assemblages have yielded important details regarding the hydrological evolution of the Black Sea during these events. Despite this focus on the geochemical signatures of the ostracods, little if any attention has been paid to the taxonomic composition of the ostracod assemblages themselves and there are notably few publications on the sub-littoral fauna of this important water body. We present a summary of the most abundant ostracod taxa of the Black Sea during the late glacial to early Holocene phase (dominated by the Candonidae, Leptocytheridae and Loxoconchidae) and chart their response to the subsequent environmental changes in the early Holocene with the pre-connection, low salinity ‘lacustrine’ fauna being replaced by one with a more Mediterranean aspect. Many of these taxa are illustrated using SEM for the first time, providing an important initial step in establishing taxonomic stability within Black Sea ostracod studies and noting faunal similarities with neighbouring areas, such as the Caspian Sea.


2017 ◽  
Vol 17 (23) ◽  
pp. 14519-14541 ◽  
Author(s):  
Scott E. Giangrande ◽  
Zhe Feng ◽  
Michael P. Jensen ◽  
Jennifer M. Comstock ◽  
Karen L. Johnson ◽  
...  

Abstract. Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunities to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.


2015 ◽  
Vol 84 (3) ◽  
pp. 348-357 ◽  
Author(s):  
Alicia White ◽  
Christy Briles ◽  
Cathy Whitlock

The Cascade Range of southwestern Oregon contains some of North America's most diverse forests, but the ecological history of this area is poorly understood. A 7900-yr-long pollen and charcoal record was examined to better understand past changes in vegetation and fire activity in relation to large-scale climate variability. From 7900 to 3500 cal yr BP, the dominance of xerophytic species and the frequent fires are consistent with a climate that was warmer and drier than at present. The period from 3500 cal yr BP to present experienced an abundance of mesophytic taxa and reduced fire frequency, suggesting cooler and wetter conditions. The regional history of Abies indicates that it was most widespread during the late-glacial period; its range contracted during the early Holocene thermal maximum, and it steadily expanded during the middle and late Holocene. In contrast, Pseudotsuga was restricted in range during the glacial period, became abundant at low-elevation sites in the Coast and northern Cascade ranges during the early Holocene, and was more prevalent in southern mid-elevation sites as the climate became cooler and wetter in the late Holocene. The sensitivity of these species to past climate change suggests that biogeographic responses to future conditions will be highly variable in this region.


Sign in / Sign up

Export Citation Format

Share Document