Binding site and equilibrium constant of ethylenediamineplatinum(II) or triamineplatinum(II) to thymidine

1978 ◽  
Vol 9 (4) ◽  
pp. 333-343 ◽  
Author(s):  
Kenji Inagaki ◽  
Yoshinori Kidani

In an attempt to study the properties of acetylcholine receptors in intestinal smooth muscle, measurements have been made of the uptake of tritium-labelled atropine and methylatropinium, and of 14 C-labelled methylfurmethide by the longitudinal muscle of guinea-pig small intestine in vitro . Substantial amounts of atropine were taken up from very dilute solutions, a clearance of 160 ml. per g tissue (wet weight) being achieved at the lowest concentration tested (1.5 × 10 -10 M). Analysis of the curve relating atropine uptake at equilibrium to the bath concentration, which was explored over a concentration range 1.5 × 10 -10 M to 2.5 × 10 -3 M, enabled three components to be distinguished: (1) A binding site with a capacity of 180 pmoles/g, and equilibrium constant 1.1 × 10 -9 M. (2) A binding site of capacity about 1000 pmoles/g and equilibrium constant about 5 × 10 -7 M. (3) A compartment with a clearance of 4.7 ml./g (nonsaturable). The equilibrium constant of the first binding site agreed exactly with that measured for acetylcholine antagonism in the same tissue. Methylatropinium was taken up in rather smaller amounts than atropine, and analysis of the uptake curve showed a binding site of capacity about 90 pmoles/g with an equilibrium constant 6.5 × 10 -10 M, an ill-defined series of binding sites with much higher equilibrium constants, and a constant clearance of about 0.4 ml. /g. Analysis of this curve was much less clear cut than that of atropine. The equilibrium constant for blockade of acetylcholine receptors by methylatropinium was 4.7 × 10 -10 M. Atropine was not taken up appreciably by striated muscle, nerve or tendon of the guineapig; hydrolysed atropine was not taken up by smooth muscle (and lacks atropinic activity); cocaine and d -tubocurarine in high concentrations did not affect atropine uptake; lachesine and benzhexol blocked atropine uptake competitively at low concentrations, and with lachesine the equilibrium constant for this interaction agreed with that measured for acetylcholine antagonism (1.4 × 10 -9 M). These findings suggested that the atropine taken up could be related to receptor-bound drug. The kinetics of atropine uptake and washout were studied over the concentration range 0.5-5 × 10 -9 M. Uptake and washout took place approximately exponentially between 2½ and 50 min, and the rate constant was 4.5-5 × 10 -4 s -1 for both uptake and washout. The uptake rate constant did not increase with concentration. This contrasted with the kinetics of receptor blockade, which took place much faster, with a rate constant which increased linearly with concentration, in accordance with the theoretical kinetic behaviour of a single binding site. This finding precluded a simple identification of atropine taken up with receptor-bound drug. Studies with various metabolic inhibitors suggested that no metabolic energy was required for the accumulation of atropine, and by dialysis experiments, the atropine taken up was shown to be bound in homogenized tissue. A theoretical study, using an analogue computer, was made of the kinetic properties of three passive binding systems, in order to see whether the observed kinetic behaviour could be simulated. It was found that a system of four binding sites in series, with only one communicating directly with the surrounding medium, could show these kinetic properties, and the outermost binding site could still show the kinetic behaviour of receptors. Experimental testing of this model demands more accurate kinetic measurements than can be made by the method used in this study. The acetylcholine-like stimulant, methylfurmethide, was taken up very slowly (taking more than 24 h to reach equilibrium), reaching a clearance of about 5 ml. /g after 6 h. This uptake was unaffected by atropine in a concentration sufficient to block 80% of acetylcholine receptors, but was blocked by depolarization in high potassium solution, suggesting that it was behaving passively as a slowly permeant cation. No uptake referable to acetylcholine receptors was detected. These findings are discussed in relation to the abundance and chemical behaviour of acetylcholine receptors in smooth muscle, and in relation to current theories of drug action.


1983 ◽  
Vol 29 (10) ◽  
pp. 1762-1766 ◽  
Author(s):  
D J Finney

Abstract In quantitative estimates from radioimmunoassay, one of four types of response curves is usually used: a freehand curve, a spline function, an equation based upon mass-action considerations, or a logistic equation. This paper comments briefly on the subjectivity and labor of the first and on the overparametrization of the second. It is chiefly concerned to compare the single binding-site equation with a simple or modified logistic. Whatever the theoretical merits of the binding-site approach (these are not under discussion), estimation of parameters is difficult. The paper shows that under many but not all circumstances a four- or five-parameter logistic will fit data at least as well over a wide range of doses. This is particularly so when both the binding-site concentration and the equilibrium constant are small.


1996 ◽  
Vol 320 (1) ◽  
pp. 101-105 ◽  
Author(s):  
Anthony P STARLING ◽  
J. Malcolm EAST ◽  
Anthony G LEE

Disulfiram [bis(diethylthiocarbamoyl)disulphide] has been found to stimulate reversibly the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum. At pH 7.2, 2.1 mM ATP and 25 °C, ATPase activity was found to double on addition of 120 µM disulfiram. Stimulation fitted to binding of disulfiram at a single site with a Kd of 61 µM. Disulfiram had no effect on the Ca2+ affinity of the ATPase or on the rate of phosphorylation of the ATPase by ATP, but increased the rate of dissociation of Ca2+ from the phosphorylated ATPase (the transport step) and increased the rate of dephosphorylation of the phosphorylated ATPase. It also decreased the level of phosphorylation of the ATPase by Pi, consistent with a 7.5-fold decrease in the equilibrium constant of the phosphorylated to non-phosphorylated forms (E2PMg/E2PiMg) at 80 µM disulfiram. Disulfiram had no significant effect on the concentration of ATP resulting in stimulation of ATPase activity, suggesting that it does not bind to the empty nucleotide-binding site on the phosphorylated ATPase. Studies of the effects of mixtures of disulfiram and jasmone (another molecule that stimulates the ATPase) suggest that they bind to separate sites on the ATPase.


1996 ◽  
Vol 76 (01) ◽  
pp. 005-008 ◽  
Author(s):  
Jean Claude Lormeau ◽  
Jean Pascal Herault ◽  
Jean Marc Herbert

SummaryWe examined the effect of the synthetic pentasaccharide representing the minimal binding site of heparin to antithrombin on the antithrombin-mediated inactivation of factor Vila bound to tissue factor. This effect was compared to the effect of unfractionated heparin. Using purified recombinant human coagulation factors and either a clotting or an amidolytic assay for the determination of the residual activity of factor Vila, we showed that the pentasaccharide was an efficient antithrombin-dependent inhibitor of the coagulant activity of tissue factor-factor Vila complex. In our experimental conditions, assuming a mean MW of 14,000 for heparin, the molar pseudo-first order rate constants for ATIII-mediated FVIIa inhibition by ATIII-binding heparin and by the synthetic pentasaccharide were found to be similar with respective values of 104,000 ± 10,500 min-1 and 112,000 ± 12,000 min-1 (mean ± s.e.m., n = 3)


1995 ◽  
Vol 73 (05) ◽  
pp. 829-834 ◽  
Author(s):  
Jaya Padmanabhan ◽  
David C Sane

SummaryThe PAI-1 binding site for VN was studied using two independent methods. PAI-1 was cleaved by Staph V8 protease, producing 8 fragments, only 2 of which bound to [125I]-VN. These fragments were predicted to overlap between residues 91-130. Since PAI-2 has structural homology to PAI-1, but does not bind to vitronectin, chimeras of PAI-1 and PAI-2 were constructed. Four chimeras, containing PAI-1 residues 1-70,1-105,1-114, and 1-167 were constructed and expressed in vitro. PAI-1, PAI-2, and all of the chimeras retained inhibitory activity for t-PA, but only the chimera containing PAI-1 residues 1-167 formed a complex with VN. Together, these results predict that the VN binding site of PAI-1 is between residues 115-130.


1997 ◽  
Vol 77 (01) ◽  
pp. 137-142 ◽  
Author(s):  
Kiyoshi Tachikawa ◽  
Keiji Hasurni ◽  
Akira Endo

SummaryPlasminogen binds to endothelial and blood cells as well as to fibrin, where the zymogen is efficiently activated and protected from inhibition by α2-antiplasmin. In the present study we have found that complestatin, a peptide-like metabolite of a streptomyces, enhances binding of plasminogen to cells and fibrin. Complestatin, at concentrations ranging from 1 to 5 μM, doubled 125I-plasminogen binding to U937 cells both in the absence and presence of lipoprotein(a), a putative physiological competitor of plasminogen. The binding of 125I-plasminogen in the presence of complestatin was abolished by e-aminocaproic acid, suggesting that the lysine binding site(s) of the plasminogen molecule are involved in the binding. Equilibrium binding analyses indicated that complestatin increased the maximum binding of 125I-plasminogen to U937 cells without affecting the binding affinity. Complestatin was also effective in increasing 125I-plasminogen binding to fibrin, causing 2-fold elevation of the binding at ~1 μM. Along with the potentiation of plasminogen binding, complestatin enhanced plasmin formation, and thereby increased fibrinolysis. These results would provide a biochemical basis for a pharmacological stimulation of endogenous fibrinolysis through a promotion of plasminogen binding to cells and fibrin.


2008 ◽  
Vol 46 (01) ◽  
Author(s):  
AE Schulze Schleithoff ◽  
A Kairat ◽  
AF Koch ◽  
W Stremmel ◽  
PH Krammer ◽  
...  

1972 ◽  
Vol 71 (2_Suppla) ◽  
pp. S420-S438 ◽  
Author(s):  
David L. Williams ◽  
Jack Gorski

ABSTRACT A number of studies have been carried out to examine the distribution of the oestradiol-binding protein complex between cytosol and nuclear fractions as a function of total binding site saturation. The results of these studies suggest that each binding protein has one binding site for the hormone. In addition, these studies suggest that the interaction of the oestradiol-binding protein complex with the nucleus involves a large number of low affinity association sites.


1983 ◽  
Vol 102 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Tjerk W. A de Bruin ◽  
Daan van der Heide ◽  
Maria C. Krol

Abstract. An immunoprecipitation assay was developed to determine the presence of antibodies against human TSH1 receptors. With this assay we were able to demonstrate that in comparison with sera from normal controls, 24 out of 30 (80%) sera from patients with untreated Graves' disease could immunoprecipitate more [125I]TSH-TSH receptor complexes. In 9 assays, an average of 14.1 ± 3.7% (sd) of the [125I]TSH-TSH receptor complexes was immunoprecipitated by the 30 Graves' sera vs 9.8 ± 3.0% by the normal pool serum (n = 23) (P < 0.001) and 7.7 ± 2.8% by the 22 normal sera (P < 0.001). One serum of the 24 positive Graves' sera was studied in detail. The results suggest that this serum contained an anti-TSH receptor auto-antibody directed towards a different determinant on the TSH receptor than the TSH binding site.


Sign in / Sign up

Export Citation Format

Share Document