Fluid dynamics of a pressurized fluidized bed: comparison between numerical solutions from two-fluid models and experimental results

1999 ◽  
Vol 54 (3) ◽  
pp. 329-342 ◽  
Author(s):  
H. Enwald ◽  
A.E. Almstedt
2015 ◽  
Vol 284 ◽  
pp. 159-169 ◽  
Author(s):  
Shailesh S. Ozarkar ◽  
Xiaokang Yan ◽  
Shuyan Wang ◽  
Christian C. Milioli ◽  
Fernando E. Milioli ◽  
...  

1995 ◽  
Vol 60 (12) ◽  
pp. 2074-2084
Author(s):  
Petr Mikulášek

The microfiltration of a model fluid on an α-alumina microfiltration tubular membrane in the presence of a fluidized bed has been examined. Following the description of the basic characteristic of alumina tubular membranes, model dispersion and spherical particles used, some comments on the experimental system and experimental results for different microfiltration systems are presented. From the analysis of experimental results it may be concluded that the use of turbulence-promoting agents resulted in a significant increase of permeate flux through the membrane. It was found out that the optimum porosity of fluidized bed for which the maximum values of permeate flux were reached is approximately 0.8.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 111
Author(s):  
Cheung-Hei Yeung ◽  
Lap-Ming Lin ◽  
Nils Andersson ◽  
Greg Comer

The I-Love-Q relations are approximate equation-of-state independent relations that connect the moment of inertia, the spin-induced quadrupole moment, and the tidal deformability of neutron stars. In this paper, we study the I-Love-Q relations for superfluid neutron stars for a general relativistic two-fluid model: one fluid being the neutron superfluid and the other a conglomerate of all charged components. We study to what extent the two-fluid dynamics might affect the robustness of the I-Love-Q relations by using a simple two-component polytropic model and a relativistic mean field model with entrainment for the equation-of-state. Our results depend crucially on the spin ratio Ωn/Ωp between the angular velocities of the neutron superfluid and the normal component. We find that the I-Love-Q relations can still be satisfied to high accuracy for superfluid neutron stars as long as the two fluids are nearly co-rotating Ωn/Ωp≈1. However, the deviations from the I-Love-Q relations increase as the spin ratio deviates from unity. In particular, the deviation of the Q-Love relation can be as large as O(10%) if Ωn/Ωp differ from unity by a few tens of percent. As Ωn/Ωp≈1 is expected for realistic neutron stars, our results suggest that the two-fluid dynamics should not affect the accuracy of any gravitational waveform models for neutron star binaries that employ the relation to connect the spin-induced quadrupole moment and the tidal deformability.


Author(s):  
Sebastian Alexander Pérez Cortés ◽  
Yerko Rafael Aguilera Carvajal ◽  
Juan Pablo Vargas Norambuena ◽  
Javier Antonio Norambuena Vásquez ◽  
Juan Andrés Jarufe Troncoso ◽  
...  

2021 ◽  
Vol 50 ◽  
pp. 101610
Author(s):  
Maxime Hervy ◽  
Jonathan Maistrello ◽  
Larissa Brito ◽  
Mathilde Rizand ◽  
Etienne Basset ◽  
...  

2013 ◽  
Vol 662 ◽  
pp. 586-590
Author(s):  
Gang Lu ◽  
Qing Song Yan ◽  
Bai Ping Lu ◽  
Shuai Xu ◽  
Kang Li

Four types of Super Typhoon drip emitter with trapezoidal channel were selected out for the investigation of the flow field of the channel, and the CFD (Computational Fluid Dynamics) method was applied to simulate the micro-field inside the channel. The simulation results showed that the emitter discharge of different turbulent model is 4%-14% bigger than that of the experimental results, the average discharge deviation of κ-ω and RSM model is 5, 4.5 respectively, but the solving efficiency of the κ-ω model is obviously higher than that of the RSM model.


Sign in / Sign up

Export Citation Format

Share Document