Tissue-specific transcriptional control of α- and β-tropomyosins in chicken muscle development

1989 ◽  
Vol 131 (2) ◽  
pp. 430-438 ◽  
Author(s):  
Thierry Meinnel ◽  
Domenico Libri ◽  
Vincent Mouly ◽  
Danièle Gros ◽  
Marc Y. Fiszman ◽  
...  
Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1443
Author(s):  
Susana A. Teixeira ◽  
Daniele B. D. Marques ◽  
Thaís C. Costa ◽  
Haniel C. Oliveira ◽  
Karine A. Costa ◽  
...  

Since pre- and postnatal development are programmed during early prenatal life, studies addressing the complete transcriptional landscape during organogenesis are needed. Therefore, we aimed to disentangle differentially expressed (DE) genes between fetuses (at 35 days old) and embryos (at 25 days old) through RNA-sequencing analysis using the pig as model. In total, 1705 genes were DE, including the top DE IBSP, COL6A6, HBE1, HBZ, HBB, and NEUROD6 genes, which are associated with developmental transition from embryos to fetuses, such as ossification, skeletal muscle development, extracellular matrix organization, cardiovascular system, erythrocyte differentiation, and neuronal system. In pathway analysis, embryonic development highlighted those mainly related to morphogenic signaling and cell interactions, which are crucial for transcriptional control during the establishment of the main organs in early prenatal development, while pathways related to myogenesis, neuronal development, and cardiac and striated muscle contraction were enriched for fetal development, according to the greater complexity of organs and body structures at this developmental stage. Our findings provide an exploratory and informative transcriptional landscape of pig organogenesis, which might contribute to further studies addressing specific developmental events in pigs and in other mammals.


Genes ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 42 ◽  
Author(s):  
Shudai Lin ◽  
Xiran Lin ◽  
Zihao Zhang ◽  
Mingya Jiang ◽  
Yousheng Rao ◽  
...  

1985 ◽  
Vol 5 (10) ◽  
pp. 2633-2641
Author(s):  
D F Clayton ◽  
M Weiss ◽  
J E Darnell

The transcription rate and abundance of several liver-specific mRNAs as well as mRNAs common to many cell types were compared in a series of rodent hepatoma cell lines, normal liver cells, and primary hepatocyte cultures. The rat hepatoma cell line, Fao, which displays a liver-specific phenotype, contained eight of eight liver-specific mRNAs examined. However, the transcription rates of most liver-specific mRNAs were found to be low (1 to 30%) compared with normal liver in this and other differentiated cell lines. This low rate is similar to the transcription rates of liver-specific mRNA sequences measured in primary cultures of hepatocytes. Several variant cell lines that had lost differentiated traits contained few or none of the liver-specific mRNAs; clonal descendents which had regained differentiated function regained the tissue-specific mRNAs as a group, but at various concentrations. Because all of the changes observed in mRNA levels were not accompanied by parallel changes in transcription of the same sequences, differential posttranscriptional stabilization of the liver-specific mRNAs must also occur in the different cell lines. These results qualify the utility of cultured cell lines in the study of tissue-specific transcriptional control, but raise the possibility that posttranscriptional mechanisms act in cooperation with transcriptional controls to bring the level of tissue-specific mRNAs closer to those found in liver cells.


1995 ◽  
Vol 15 (4) ◽  
pp. 1870-1878 ◽  
Author(s):  
J Grayson ◽  
R S Williams ◽  
Y T Yu ◽  
R Bassel-Duby

Previous investigations have defined three upstream activation elements--CCAC, A/T, and TATA sequences--necessary for muscle-specific transcription of the myoglobin gene. In the present study, we demonstrate that these three sequences elements, prepared as synthetic oligonucleotide cassettes, function synergistically to constitute a cell-type-specific transcription unit. Previously, cognate binding factors that recognize the CCAC and TATA elements were identified. In this study we determine that the A/T element binds two nuclear factors, including myocyte enhancer factor-2 (MEF-2) and an apparently unknown factor we provisionally termed ATF35 (A/T-binding factor, 35 kDa). Mutations that alter in vitro binding of either MEF-2 or ATF35 to this site diminish promoter function in vivo. Functional synergism between factors binding the CCAC and A/T elements is sensitive to subtle mutations in the TATA sequence, recapitulating the unusual preference for specific TATA variants exhibited by the native myoglobin promoter. These results provide new insights into mechanisms that underlie the distinctive pattern of myoglobin gene regulation in mammalian muscle development and lay a foundation for further studies to elucidate general principles of transcriptional control of complex mammalian promoters through combinatorial actions of heterologous transcriptional factors.


2005 ◽  
Vol 22 (2) ◽  
pp. 128-134 ◽  
Author(s):  
A.-C. Huet ◽  
L. Mortier ◽  
E. Daeseleire ◽  
T. Fodey ◽  
C. Elliott ◽  
...  

2017 ◽  
Author(s):  
Abhijeet R. Sonawane ◽  
John Platig ◽  
Maud Fagny ◽  
Cho-Yi Chen ◽  
Joseph N. Paulson ◽  
...  

Although all human tissues carry out common processes, tissues are distinguished by gene expres-sion patterns, implying that distinct regulatory programs control tissue-specificity. In this study, we investigate gene expression and regulation across 38 tissues profiled in the Genotype-Tissue Expression project. We find that network edges (transcription factor to target gene connections) have higher tissue-specificity than network nodes (genes) and that regulating nodes (transcription factors) are less likely to be expressed in a tissue-specific manner as compared to their targets (genes). Gene set enrichment analysis of network targeting also indicates that regulation of tissue-specific function is largely independent of transcription factor expression. In addition, tissue-specific genes are not highly targeted in their corresponding tissue-network. However, they do assume bottleneck positions due to variability in transcription factor targeting and the influence of non-canonical regulatory interactions. These results suggest that tissue-specificity is driven by context-dependent regulatory paths, providing transcriptional control of tissue-specific processes.


Sign in / Sign up

Export Citation Format

Share Document