scholarly journals Involvement of poly(ADP-ribose) polymerase and activation of caspase-3-like protease in heat shock-induced apoptosis in tobacco suspension cells

FEBS Letters ◽  
2000 ◽  
Vol 474 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Rui-Hua Tian ◽  
Gui-You Zhang ◽  
Chang-Hui Yan ◽  
Yao-Ren Dai
2005 ◽  
Vol 280 (12) ◽  
pp. 11059-11066 ◽  
Author(s):  
Merideth C. Kamradt ◽  
Meiling Lu ◽  
Michael E. Werner ◽  
Toni Kwan ◽  
Feng Chen ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 636-636 ◽  
Author(s):  
Ramadevi Nimmanapalli ◽  
Elvira Gerbino ◽  
William S. Dalton ◽  
Melissa Alsina

Abstract Multiple myeloma (MM) is characterized by the clonal proliferation of malignant plasma cells that accumulate preferentially in the bone marrow. In spite of high-dose chemotherapy and novel targeted therapies, myeloma remains to be an incurable disease due to emergence of drug resistance. Therefore, identification of mechanisms involved in drug resistance are essential to develop new and more effective targeted therapies. Heat shock proteins (HSPs) are a super family of highly conserved proteins, which are induced in plant, yeast, bacterial and mammalian cells in response to an array of physiological and environmental stress cues. Among heat shock protein families, HSP70 is one of the most highly conserved and is the only protein expressed in response to cellular stress. HSPs have been implicated in multidrug resistance, as they have been repeatedly demonstrated to inhibit apoptosis induced by a number of chemotherapeutic agents (Chant et al., 1996). We have shown that adhesion of myeloma cells to either bone marrow stromal cells or FN enhances HSP70 expression and secretion as determined by real-time RT-PCR and ELISA, respectively. Inhibition of the HSP70 expression using either KNK437 (HSF-1 inhibitor) or RNAi to HSP70, decreased 8226 cell adhesion to stromal cells as well as to FN as early as two hours, and this adhesion was mediated through α4β1 and α5β1 integrins. Treatment of 8226 cells with KNK437 or RNAi HSP70, induce apoptosis at 24 hours in a dose dependent manner. Interestingly, this effect was independent of adhesion (FN 55% apoptosis vs suspension 42% apoptosis) and is mediated by caspase-3 and PARP cleavage. Further more, treatment of 8226 cells with HSP70 inhibitors reversed CAM-DR to melphalan. To investigate whether HSP70 inhibition can cause apoptosis in Melphalan-resistant myeloma cells, we treated 8226/S and 8226/LR5 cells with either KNK437 alone or in combination with Melphalan. Our results show that KNK437 not only caused more apoptosis in 8226/LR5 (55% with 100 μM) cells than in the sensitive parental cells (42%), but also sensitized 8226/LR5 cells to Melphalan (64%), even though intracellular protein and RNA expression of heat shock protein 27, 70 and 90 was not affected in either Melphalan-sensitive or -resistant cells. These results suggest that 8226/LR5 cells depend on HSP70 for survival more than parental 8226 cells Similarly, pretreatment of 8226 cells with either KNK437, or RNAi against HSP70, enhanced the proteasome inhibitor, Bortezomib- induced apoptosis (Bortezomib 10 nM 8 %, KNK437 25 μM 14 % Combination, 30 %). This apoptosis was mediated by Caspase 3 and was correlated with reduced HSP70 expression. 8226 myeloma cells treated with Bortezomib (10 nM) caused increased RNA and protein expression of HSP70, HSP27 and HSP90 as early as 4 and 8 hrs, respectively. Further studies elucidating the mechanism/s by which HSP70 inhibition sensitizes Melphalan or bortezomib induced apoptosis are currently under investigation. Our preclinical studies provide the basis for potential need for the development of anti HSP70 inhibitors for clinical studies in myeloma.


2001 ◽  
Vol 314 (1-2) ◽  
pp. 215-220 ◽  
Author(s):  
Ho-Jeong Na ◽  
Hyun-Na Koo ◽  
Gil-Goo Lee ◽  
Su-Jin Yoo ◽  
Jae-Hwang Park ◽  
...  

Author(s):  
D. W. Fairbain ◽  
M.D. Standing ◽  
K.L. O'Neill

Apoptosis is a genetically defined response to physiological stimuli that results in cellular suicide. Features common to apoptotic cells include chromatin condensation, oligonucleosomal DNA fragmentation, membrane blebbing, nuclear destruction, and late loss of ability to exclude vital dyes. These characteristics contrast markedly from pathological necrosis, in which membrane integrity loss is demonstrated early, and other features of apoptosis, which allow a non-inflammatory removal of dead and dying cells, are absent. Using heat shock-induced apoptosis as a model for examining stress response in cells, we undertook to categorize a variety of human leukemias and lymphomas with regard to their response to heat shock. We were also interested in determining whether a common temporal order was followed in cells dying by apoptosis. In addition, based on our previous results, we investigated whether increasing heat load resulted in increased apoptosis, with particular interest in relatively resistant cell lines, or whether the mode of death changed from apoptosis to necrosis.


2019 ◽  
Vol 19 (4) ◽  
pp. 439-452 ◽  
Author(s):  
Mohamed R. Selim ◽  
Medhat A. Zahran ◽  
Amany Belal ◽  
Moustafa S. Abusaif ◽  
Said A. Shedid ◽  
...  

Objective: Conjugating quinolones with different bioactive pharmacophores to obtain potent anticancer active agents. Methods: Fused pyrazolopyrimidoquinolines 3a-d, Schiff bases 5, 6a-e, two hybridized systems: pyrazolochromenquinoline 7 and pyrazolothiazolidinquinoline 8, different substituted thiazoloquinolines 13-15 and thiazolo[3,2-a]pyridine derivatives 16a-c were synthesized. Their chemical structures were characterized through spectral and elemental analysis, cytotoxic activity on five cancer cell lines, caspase-3 activation, tubulin polymerization inhibition and cell cycle analysis were evaluated. Results: Four compounds 3b, 3d, 8 and 13 showed potent activity than doxorubicin on HCT116 and three compounds 3b, 3d and 8 on HEPG2. These promising derivatives showed increase in the level of caspase-3. The trifloromethylphenyl derivatives of pyrazolopyrimidoquinolines 3b and 3d showed considerable tubulin polymerization inhibitory activity. Both compounds arrested cell cycle at G2/M phase and induced apoptosis. Conclusion: Compounds 3b and 3d can be considered as promising anticancer active agents with 70% of colchicine activity on tubulin polymerization inhibition and represent hopeful leads that deserve further investigation and optimization.


Shock ◽  
1994 ◽  
Vol 1 (Supplement) ◽  
pp. 21
Author(s):  
P. Abello ◽  
S. Fidler ◽  
T. G. Buchman
Keyword(s):  

2001 ◽  
Vol 280 (3) ◽  
pp. C614-C620 ◽  
Author(s):  
Chantal Colmont ◽  
Stéphanie Michelet ◽  
Dominique Guivarc'h ◽  
Germain Rousselet

Urea, with NaCl, constitutes the osmotic gradient that allows water reabsorption in mammalian kidneys. Because NaCl induces heat shock proteins, we tested the responses to heat shock of mIMCD3 cells adapted to permissive urea and/or NaCl concentrations. We found that heat-induced cell death was stronger after adaptation to 250 mM urea. This effect was reversible, dose dependent, and, interestingly, blunted by 125 mM NaCl. Moreover, we have shown that urea-adapted cells engaged in an apoptotic pathway upon heat shock, as shown by DNA laddering. This sensitization is not linked to a defect in the heat shock response, because the induction of HSP70 was similar in isotonic and urea-adapted cells. Moreover, it is not linked to the presence of urea inside cells, because washing urea away did not restore heat resistance and because applying urea and heat shock at the same time did not lead to heat sensitivity. Together, these results suggest that urea modifies the heat shock response, leading to facilitated apoptosis.


Sign in / Sign up

Export Citation Format

Share Document