scholarly journals Mutational analysis of the Mycobacterium tuberculosis Rv1625c adenylyl cyclase: residues that confer nucleotide specificity contribute to dimerization

FEBS Letters ◽  
2003 ◽  
Vol 545 (2-3) ◽  
pp. 253-259 ◽  
Author(s):  
Avinash R Shenoy ◽  
N Srinivasan ◽  
M Subramaniam ◽  
Sandhya S Visweswariah
2021 ◽  
Vol 15 (12) ◽  
pp. 3273-3276
Author(s):  
Sana Hafeez ◽  
Haleema Sajid ◽  
Farouk Qamar Malik ◽  
Imran Ali Zaidi ◽  
Sobia Niaz ◽  
...  

Background: Tuberculosis (TB) is fatal and life threatening infectious disease. The transmission rate of tuberculosis is very high. Various drugs are used as treatment for TB. Recently it has been observed that one of the most important factor for fast TB spread is development of anti-TB drug resistant mycobacterium tuberculosis (MTB). Various combination of drugs like isoniazid (INH), rifampicin (RIF), Streptomycin(SM), pyrazinamide (PZA) or ethambutol (EMB) are in global use for TB treatment. Improper usage of these drugs makes the person prone to develop anti-TB drug resistant tuberculosis. Aim: To evaluate association of embB gene with ethambutol resistance in Mycobacterium Tuberculosis. Methods: 104 Specimens of sputum from suspected tuberculosis patients were processed for inoculation in Lowenstein J Medium after it has been decontaminated properly. Kit method by using QIAamp DNA Mini kit was utilized for extraction of DNA. Then region from base 6953 to 10249 of embB gene was amplified through PCR and then followed by sequencing with the aid of softwares blast2seq and ClustalW2. Three primer sets were utilized to amplify embB gene. Ethambutol (EMB) Resistant MTB specimens were processed to study mutation in embB gene. Results: Out of the total 104 sputum specimens, 14 samples were found to have ethambutol resistance. These 14 samples were then processed for mutational analysis. DNA sequence analysis of these 14 samples confirmed embB gene mutation in 10 samples. Mutational analysis revealed that 08 samples showed mutation at codon 306 and two samples showed mutation at 319 codon. The reported mutation Methionine →Isoleucine was seen in 07 samples with ATG codon replaced by ATA codon at codon position 306. One sample showed mutation as Methionine →Isoleucine with ATG codon replaced by ATC codon at codon position 306. Two samples showed mutation as Tyrosine →Serine with TAT codon replaced by TCT at 319 codon position in embB gene. Conclusion: This study concludes that mutation of certain genes particularly point mutation of embB gene at codon 306 and 319 is associated with drug resistance of ethambutol in ethambutol resistant mycobacterium tuberculosis patients. Keywords: Ethambutol, embB gene, Mycobacterium tuberculosis.


2021 ◽  
Author(s):  
Kaley M. Wilburn ◽  
Christine R. Montague ◽  
Bo Qin ◽  
Ashley K. Woods ◽  
Melissa S. Love ◽  
...  

There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3’, 5’-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required for cholesterol metabolism. Finally, in this work the pharmacokinetic properties of Rv1625c agonists are optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a novel role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.


2018 ◽  
Vol 475 (15) ◽  
pp. 2457-2471 ◽  
Author(s):  
Rajapiramuthu Srikalaivani ◽  
Amrita Singh ◽  
Mamannamana Vijayan ◽  
Avadhesha Surolia

Biochemical and crystallographic studies on Mycobacterium tuberculosis 3-hydroxyisobutyric acid dehydrogenase (MtHIBADH), a member of the 3-hydroxyacid dehydrogenase superfamily, have been carried out. Gel filtration and blue native PAGE of MtHIBADH show that the enzyme is a dimer. The enzyme preferentially uses NAD+ as the cofactor and is specific to S-hydroxyisobutyric acid (HIBA). It can also use R-HIBA, l-serine and 3-hydroxypropanoic acid (3-HP) as substrates, but with much less efficiency. The pH optimum for activity is ∼11. Structures of the native enzyme, the holoenzyme, binary complexes with NAD+, S-HIBA, R-HIBA, l-serine and 3-HP and ternary complexes involving the substrates and NAD+ have been determined. None of the already known structures of HIBADH contain a substrate molecule at the binding site. The structures reported here provide for the first time, among other things, a clear indication of the location and interactions of the substrates at the active site. They also define the entrance of the substrates to the active site region. The structures provide information on the role of specific residues at the active site and the entrance. The results obtained from crystal structures are consistent with solution studies including mutational analysis. They lead to the proposal of a plausible mechanism of the action of the enzyme.


PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e45459 ◽  
Author(s):  
Michelle M. Giffin ◽  
Ronald W. Raab ◽  
Melissa Morganstern ◽  
Charles D. Sohaskey

2014 ◽  
Vol 196 (8) ◽  
pp. 575-588 ◽  
Author(s):  
Satyabrata Bag ◽  
Bhabatosh Das ◽  
Shreya Dasgupta ◽  
Rupak K. Bhadra

FEBS Journal ◽  
2006 ◽  
Vol 273 (18) ◽  
pp. 4219-4228 ◽  
Author(s):  
Amira Abdel Motaal ◽  
Ivo Tews ◽  
Joachim E. Schultz ◽  
Jurgen U. Linder

2004 ◽  
Vol 279 (44) ◽  
pp. 46271-46279 ◽  
Author(s):  
Jui-ling Chou ◽  
Chuen-Lin Huang ◽  
Hsing-Lin Lai ◽  
Amos C. Hung ◽  
Chen-Li Chien ◽  
...  

In the present study, we used the N terminus (amino acids 1∼160) of type VI adenylyl cyclase (ACVI) as bait to screen a mouse brain cDNA library and identified Snapin as a novel ACVI-interacting molecule. Snapin is a binding protein of SNAP25, a component of the SNARE complex. Co-immunoprecipitation analyses confirmed the interaction between Snapin and full-length ACVI. Mutational analysis revealed that the interaction domains of ACVI and Snapin were located within amino acids 1∼86 of ACVI and 33–51 of Snapin, respectively. Co-localization of ACVI and Snapin was observed in primary hippocampal neurons. Moreover, expression of Snapin specifically eliminated protein kinase C (PKC)-mediated suppression of ACVI, but not that of cAMP-dependent protein kinase (PKA) or calcium. Mutation of the potential PKC and PKA phosphorylation sites of Snapin did not affect the ability of Snapin to reverse the PKC inhibitory effect on ACVI. Phosphorylation of Snapin by PKC or PKA therefore might not be crucial for Snapin action on ACVI. In contrast, SnapinΔ33–51, which harbors an internal deletion of amino acids 33–51 did not affect PKC-mediated inhibition of ACVI, supporting that amino acids 33–51 of Snapin comprises the ACVI-interacting region. Consistently, Snapin exerted no effect on PKC-mediated inhibition of an ACVI mutant (ACVI-ΔA87), which lacked the Snapin-interacting region (amino acids 1–86). Snapin thus reverses its action via direct interaction with the N terminus of ACVI. Collectively, we demonstrate herein that in addition to its association with the SNARE complex, Snapin also functions as a regulator of an important cAMP synthesis enzyme in the brain.


2007 ◽  
Vol 369 (5) ◽  
pp. 1282-1295 ◽  
Author(s):  
Felix Findeisen ◽  
Jürgen U. Linder ◽  
Anita Schultz ◽  
Joachim E. Schultz ◽  
Britta Brügger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document