scholarly journals Pyridoxal phosphate binding to wild type, W330F, and C298S mutants ofEscherichia coliapotryptophanase: unraveling the cold inactivation

FEBS Letters ◽  
1998 ◽  
Vol 433 (3) ◽  
pp. 279-282 ◽  
Author(s):  
Tali Erez ◽  
Robert S. Phillips ◽  
Abraham H. Parola
2002 ◽  
Vol 68 (7) ◽  
pp. 3537-3544 ◽  
Author(s):  
Nathalie Connil ◽  
Yoann Le Breton ◽  
Xavier Dousset ◽  
Yanick Auffray ◽  
Alain Rincé ◽  
...  

ABSTRACT Screening of a library of Enterococcus faecalis insertional mutants allowed isolation of a mutant affected in tyramine production. The growth of this mutant was similar to that of the wild-type E. faecalis JH2-2 strain in Maijala broth, whereas high-performance liquid chromatography analyses showed that tyramine production, which reached 1,000 μg ml−1 for the wild-type strain, was completely abolished. Genetic analysis of the insertion locus revealed a gene encoding a decarboxylase with similarity to eukaryotic tyrosine decarboxylases. Sequence analysis revealed a pyridoxal phosphate binding site, indicating that this enzyme belongs to the family of amino acid decarboxylases using this cofactor. Reverse transcription-PCR analyses demonstrated that the gene (tdc) encoding the putative tyrosine decarboxylase of E. faecalis JH2-2 is cotranscribed with the downstream gene encoding a putative tyrosine-tyramine antiporter and with the upstream tyrosyl-tRNA synthetase gene. This study is the first description of a tyrosine decarboxylase gene in prokaryotes.


2000 ◽  
Vol 182 (23) ◽  
pp. 6732-6741 ◽  
Author(s):  
Yumiko Takatsuka ◽  
Yoshihiro Yamaguchi ◽  
Minenobu Ono ◽  
Yoshiyuki Kamio

ABSTRACT Lysine decarboxylase (LDC; EC 4.1.1.18 ) from Selenomonas ruminantium comprises two identical monomeric subunits of 43 kDa and has decarboxylating activities toward both l-lysine andl-ornithine with similar Km andVmax values (Y. Takatsuka, M. Onoda, T. Sugiyama, K. Muramoto, T. Tomita, and Y. Kamio, Biosci. Biotechnol. Biochem. 62:1063–1069, 1999). Here, the LDC-encoding gene (ldc) of this bacterium was cloned and characterized. DNA sequencing analysis revealed that the amino acid sequence of S. ruminantium LDC is 35% identical to those of eukaryotic ornithine decarboxylases (ODCs; EC 4.1.1.17 ), including the mouse,Saccharomyces cerevisiae, Neurospora crassa,Trypanosoma brucei, and Caenorhabditis elegansenzymes. In addition, 26 amino acid residues, K69, D88, E94, D134, R154, K169, H197, D233, G235, G236, G237, F238, E274, G276, R277, Y278, K294, Y323, Y331, D332, C360, D361, D364, G387, Y389, and F397 (mouse ODC numbering), all of which are implicated in the formation of the pyridoxal phosphate-binding domain and the substrate-binding domain and in dimer stabilization with the eukaryotic ODCs, were also conserved inS. ruminantium LDC. Computer analysis of the putative secondary structure of S. ruminantium LDC showed that it is approximately 70% identical to that of mouse ODC. We identified five amino acid residues, A44, G45, V46, P54, and S322, within the LDC catalytic domain that confer decarboxylase activities toward bothl-lysine and l-ornithine with a substrate specificity ratio of 0.83 (defined as thek cat/Km ratio obtained with l-ornithine relative to that obtained withl-lysine). We have succeeded in converting S. ruminantium LDC to form with a substrate specificity ratio of 58 (70 times that of wild-type LDC) by constructing a mutant protein, A44V/G45T/V46P/P54D/S322A. In this study, we also showed that G350 is a crucial residue for stabilization of the dimer in S. ruminantium LDC.


Biochemistry ◽  
1991 ◽  
Vol 30 (16) ◽  
pp. 4072-4077 ◽  
Author(s):  
Katsushi Nishimura ◽  
Katsuyuki Tanizawa ◽  
Tohru Yoshimura ◽  
Nobuyoshi Esaki ◽  
Shiroh Futaki ◽  
...  

2004 ◽  
Vol 279 (44) ◽  
pp. 46057-46064 ◽  
Author(s):  
Zulfiqar Ahmad ◽  
Alan E. Senior

In the catalytic mechanism of ATP synthase, phosphate (Pi) binding and release steps are believed to be correlated to γ-subunit rotation, and Pibinding is proposed to be prerequisite for binding ADP in the face of high cellular [ATP]/[ADP] ratios. In x-ray structures, residue βAsn-243 appears centrally located in the Pi-binding subdomain of catalytic sites. Here we studied the role of βAsn-243 inEscherichia coliATP synthase by mutagenesis to Ala and Asp. Mutation βN243A caused 30-fold impairment of F1-ATPase activity; 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole inhibited this activity less potently than in wild type and Piprotected from inhibition. ADP-fluoroaluminate was more inhibitory than in wild-type, but ADP-fluoroscandium was less inhibitory. βN243D F1-ATPase activity was impaired by 1300-fold and was not inhibited by ADP-fluoroaluminate or ADP-fluoroscandium. 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole activated βN243D F1-ATPase, and Pidid not affect activation. We conclude that residue βAsn-243 is not involved in Pibinding directly but is necessary for correct organization of the transition state complex through extensive involvement in hydrogen bonding to neighboring residues. It is also probably involved in orientation of the “attacking water” and of an associated second water.


1983 ◽  
Vol 112 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Jason M. Kittler ◽  
Dace Viceps-Madore ◽  
John A. Cidlowski ◽  
John W. Thanassi

Sign in / Sign up

Export Citation Format

Share Document