Relationship between pool depth and internal washing on the beach of a solid bowl decanter centrifuge

2004 ◽  
Vol 41 (6) ◽  
pp. 36-40 ◽  
Author(s):  
Bart Peeters ◽  
Stefan Weis
2021 ◽  
pp. 105148
Author(s):  
Thomas Schubert ◽  
Irem Ergin ◽  
Fiona Panetta ◽  
Jörg Hinrichs ◽  
Zeynep Atamer

Author(s):  
Leif M. Burge ◽  
Laurence Chaput-Desrochers ◽  
Richard Guthrie

Pipelines can be exposed at water crossings where rivers lower the channel bed. Channel bed scour may cause damage to linear infrastructure such as pipelines by exposing the pipe to the flow of water and sediment. Accurate estimation of depth of scour is therefore critical in limiting damage to infrastructure. Channel bed scour has three main components: (1) general scour, (2) bed degradation, and (3) pool depth. General scour is the temporary lowering of the channel bed during a flood event. Channel bed degradation is the systematic lowering of a channel bed over time. Pool depth is depth of pools below the general bed elevation and includes the relocation of pools that result from river dynamics. Channel degradation is assessed in the field using indicators of channel incision such as channel bed armoring and bank characteristics, through the analysis of long profiles and sediment transport modelling. Pool depth is assessed using long profiles and channel movement over time. The catastrophic nature of bed lowering due to general scour requires a different assessment. A design depth of cover is based on analysis of depth of scour for a given return period (eg. 100-years). There are three main steps to predict general scour: (1) regional flood frequency analysis, (2) estimation of hydraulic variables, and (3) scour depth modelling. Typically, four scour models are employed: Lacey (1930), Blench (1969), Neill (1973), and Zeller (1981), with the average or maximum value used for design depth. We provide herein case studies for potential scour for pipeline water crossings at the Little Smoky River and Joachim Creek, AB. Using the four models above, and an analysis of channel degradation and pool depth, the recommended minimum depth of cover of 0.75 m and 0.142 m, respectively, were prescribed. Variability between scour models is large. The general scour model results varied from 0.45 m and 0.75 m for the Little Smoky River and 0.16 m to 0.51 m for Joachim Creek. While these models are more than 30 years old and do not adequately account for factors such as sediment mobility, they nevertheless do provide usable answers and should form part of the usual toolbox in water crossing scour calculations.


2016 ◽  
Vol 4 (1) ◽  
pp. 11-23 ◽  
Author(s):  
J.-L. Grimaud ◽  
C. Paola ◽  
V. Voller

Abstract. Knickpoints are fascinating and common geomorphic features whose dynamics influence the development of landscapes and source-to-sink systems – in particular the upstream propagation of erosion. Here, we study river profiles and associated knickpoints experimentally in a microflume filled with a cohesive substrate made of silica, water and kaolinite. We focus on the effect on knickpoint dynamics of varying the distribution of base-level fall (rate, increment, and period) and substrate strength, i.e., kaolinite content. Such simple cases are directly comparable to both bedrock and alluvial river systems. Under a constant rate of base-level fall, knickpoints of similar shape are periodically generated, highlighting self-organized dynamics in which steady forcing leads to multiple knickpoint events. Temporary shielding of the bed by alluvium controls the spacing between these unit knickpoints. Shielding is, however, not effective when base-level drops exceed alluvium thickness. While the base-level fall rate controls the overall slope of experiments, it is not instrumental in dictating the major characteristics of unit knickpoints. Instead the velocity, face slope and associated plunge pool depth of these knickpoints are all strongly influenced by lithology. The period between knickpoints is set by both alluvium thickness and base-level fall rate, allowing use of knickpoint spacing along rivers as an indicator of base-level fall rate.


Author(s):  
Felipe Lopez ◽  
Joseph Beaman ◽  
Rodney Williamson ◽  
Eric Taleff ◽  
Trevor Watt

2011 ◽  
Vol 264-265 ◽  
pp. 1401-1408 ◽  
Author(s):  
Evans Chikarakara ◽  
Sumsun Naher ◽  
Dermot Brabazon

In the present contribution, a 1.5kW CO2 laser in pulsed wave mode was used to study the effects of laser processing parameters at specific energy fluence. Cylindrical AISI 316L stainless steel samples rotating perpendicular to the laser irradiation direction were used for these experiments. A surface temperature prediction model was implemented to set the experimental process parameters. Laser processing of AISI 316L steel showed a strong correlation between melt pool depth and the residence time at specific fluence levels. At fixed energy fluence, increase in residence time resulted in growth of the melt pool depth. In the melted region, the microstructure was observed to be of more uniform composition and contain fewer impurities. To improve absorption level, samples were etched and roughened. These samples exhibited lower roughness levels compared to the un-treated samples. For a constant fluence level, samples with improved absorption displayed an increase in depth of melt pool at lower peak powers and higher residence time. As the laser beam interaction time increased, the surface roughness of the steel increased for the various pulse energy levels examined. While the structure of the surface was seen to retain a crystal arrangement, grain orientation changes were observed in the laser processed region.


Sign in / Sign up

Export Citation Format

Share Document