Strength Calculation of the Screw Conveyor of a Decanter Centrifuge under Normal Operation Conditions

Author(s):  
Zhi Xin Huang ◽  
Cai Fu Qian ◽  
De Shun Fan ◽  
Jin Hua Xiao
2007 ◽  
Vol 353-358 ◽  
pp. 438-441
Author(s):  
Zhi Xin Huang ◽  
Cai Fu Qian ◽  
De Shun Fan ◽  
Jin Hua Xiao

A parameterized 3-D finite element model of the screw conveyor of a decanter centrifuge was established. With the model, stress analyses for the screw conveyor under normal operation conditions were carried out and the influences of the structural parameters were investigated. Orthogonal designs were used to sort out major factors and optimize calculations for the effects of factors on the strength of the conveyor. With the finite element calculation results, four empirical formulas for the strength of the conveyor under different loadings were regressed. By applying stress superposition principle, strength check criteria under normal operation conditions were given which can be used for the design of the screw conveyor.


2019 ◽  
Vol 7 (3A) ◽  
Author(s):  
Claubia Pereira ◽  
Jéssica P. Achilles ◽  
Fabiano Cardoso ◽  
Victor F. Castro ◽  
Maria Auxiliadora F. Veloso

A spent fuel pool of a typical Pressurized Water Reactor (PWR) was evaluated for criticality studies when it uses reprocessed fuels. PWR nuclear fuel assemblies with four types of fuels were considered: standard PWR fuel, MOX fuel, thorium-uranium fuel and reprocessed transuranic fuel spiked with thorium. The MOX and UO2 benchmark model was evaluated using SCALE 6.0 code with KENO-V transport code and then, adopted as a reference for other fuels compositions. The four fuel assemblies were submitted to irradiation at normal operation conditions. The burnup calculations were obtained using the TRITON sequence in the SCALE 6.0 code package. The fuel assemblies modeled use a benchmark 17x17 PWR fuel assembly dimensions. After irradiation, the fuels were inserted in the pool. The criticality safety limits were performed using the KENO-V transport code in the CSAS5 sequence. It was shown that mixing a quarter of reprocessed fuel withUO2 fuel in the pool, it would not need to be resized 


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
A. Romero ◽  
Y. Lage ◽  
S. Soua ◽  
B. Wang ◽  
T.-H. Gan

Reliable monitoring for the early fault diagnosis of gearbox faults is of great concern for the wind industry. This paper presents a novel approach for health condition monitoring (CM) and fault diagnosis in wind turbine gearboxes using vibration analysis. This methodology is based on a machine learning algorithm that generates a baseline for the identification of deviations from the normal operation conditions of the turbine and the intrinsic characteristic-scale decomposition (ICD) method for fault type recognition. Outliers picked up during the baseline stage are decomposed by the ICD method to obtain the product components which reveal the fault information. The new methodology proposed for gear and bearing defect identification was validated by laboratory and field trials, comparing well with the methods reviewed in the literature.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Angelina-Nataliya V. Vukolova ◽  
Andrei A. Rusinkevich

Abstract The article presents the analysis of the data on radionuclide composition of airborne discharges of 52 European nuclear power plants (NPPs) with water–water energetic reactor facilities (WWER), pressurized water reactor facilities (PWR), and boiling water reactor facilities (BWR) under normal operation conditions. It contains lists of radionuclides, registered in discharges of researched NPPs, and gives estimation of contributions of radionuclides, forming the discharge, into total activity of discharge and into total effective dose, created by the discharge activity. It was determined that the maximal contribution into discharge activity of all researched NPPs make noble gases, tritium, and carbon-14, while the latter is the main dose-making radionuclide.


2015 ◽  
Vol 39 (2) ◽  
pp. 221-237
Author(s):  
Wan Ma ◽  
Zhen C. Zhu ◽  
Yu X. Peng ◽  
Guo A. Chen

In this paper, the tribological properties and the film-forming properties of the friction-promoting grease (FPG) A under point-contact conditions were investigated by conducting respectively four-ball experiments and FPG A-lubricated ball-and-disc contact experiments. The experimental results indicate that the coefficient of friction (COF) decreases with an increase in the rotating speed at a constant load; FPG A has a good film-forming ability and a good adhesion property; the application of FPG A under hoist’s normal operation conditions could greatly protect the contact surfaces from wear and supply a sufficient COF.


Author(s):  
M. H. Hansen

The aeroelastic stability of a three-bladed wind turbine is considered with respect to classical flutter. Previous studies have shown that the risk of stall-induced vibrations of turbine blades is related to the dynamics of the complete turbine, for example does the aerodynamic damping of a rotor whirling mode depend highly on the tower stiffness. The results of this paper indicate that the turbine dynamics also affect the risk of flutter. The study is based on an eigenvalue analysis of a linear aeroelastic turbine model. In an example of a MW sized turbine, the critical frequency of the first torsional blade mode is determined for which flutter can occur under normal operation conditions. It is shown that this critical torsional frequency is higher when the blades are interacting through the hub with the remaining turbine, than when all blades are rigidly clamped at the root. Thus, the dynamics of the turbine has increased the risk of flutter.


Author(s):  
D. I. Manolas ◽  
V. A. Riziotis ◽  
S. G. Voutsinas

As the size of commercial wind turbines increases, new blade designs become more flexible in order to comply with the requirement for reduced weights. In normal operation conditions, flexible blades undergo large bending deflections, which exceed 10% of their radius, while significant torsion angles toward the tip of the blade are obtained, which potentially affect performance and stability. In the present paper, the effects on the loads of a wind turbine from structural nonlinearities induced by large deflections of the blades are assessed, based on simulations carried out for the NREL 5 MW wind turbine. Two nonlinear beam models, a second order (2nd order) model and a multibody model that both account for geometric nonlinear structural effects, are compared to a first order beam (1st order) model. Deflections and loads produced by finite element method based aero-elastic simulations using these three models show that the bending–torsion coupling is the main nonlinear effect that drives differences on loads. The main effect on fatigue loads is the over 100% increase of the torsion moment, having obvious implications on the design of the pitch bearings. In addition, nonlinearity leads to a clear shift in the frequencies of the second edgewise modes.


2013 ◽  
Vol 790 ◽  
pp. 651-654
Author(s):  
Chi Chen ◽  
Hong Bo Shen ◽  
Min Wang

In this thesis, the conical tower of domestic popular 1.5MW wind turbine is analyzed in dynamic by using the software ANSYS. The natural frequencies can be extracted from the model analysis results, comparing them with the impeller rotational frequency and determining whether the tower will resonate when the wind turbine under normal operation conditions. Based on the model analysis, the transient dynamic analysis is carried out by inputting the history records of seismic wave acceleration, Both these two analysis can provide the basis for the safety evaluation of the tower.


2018 ◽  
Vol 10 (0) ◽  
pp. 1-5
Author(s):  
Dovydas Rimdžius ◽  
Juozas Bielskus

Fans used in modern buildings ventilation systems make up a large part of the building‘s total energy demand. In order to ensure proper air quality and high efficiency of ventilation systems, it is necessary to search new solutions. One of the possible ways is to use renewable energy technologies. Currently it is a widespread use of wind energy in turboventilators. Major part of previous researches are related to tests of different construction turboventilators, determination of their characteristics and analysis of results. However, assessment of the current researches situation indicates the lack of fundamental researches of air flows interaction processes impact to turboventilators efficiency. In addition, researchers on hybrid turboventilators still search for solutions to increase the ventilation functionality when there is not enough wind power for operation of these devices. In order to determine the significance of these processes in more detail, in the present study, two different types of turboventilators are experimentally tested in two different ways. In one case, their rotors are rotated by an additional source of energy, in another case they are tested under different wind speed conditions. The aim of research is to assess not only the characteristics of the testes devices under normal conditions, but also their ventilation potential without wind flow. The results of experimental investigation showed that under normal operation conditions of the device, a large part of the extracted air flow is impacted by rotor rotation and ejection phenomenon. Empirical equations and investigation results presented in the paper can be useful for comparing other experiments and improving the functionality of the device at low wind speeds. Santrauka Šiuolaikinių pastatų vėdinimo sistemose naudojami ventiliatoriai sudaro didelę dalį pastato bendrojo energijos poreikio. Siekiant užtikrinti tinkamą oro kokybę ir aukštą vėdinimo sistemų efektyvumą, būtina ieškoti naujų sprendimų. Vienas iš galimų būdų – atsinaujinančią energiją naudojančių technologijų taikymas. Šiuo metu plačiai paplitęs būdas naudoti vėjo energiją turboventiliatoriuose. Didžioji dalis ankstesniuose moksliniuose tyrimuose atliktų eksperimentų susiję su skirtingų konstrukcijų turboventiliatorių bandymais, jų charakteristikų nustatymu ir rezultatų palyginimu. Visgi, vertinant esamą mokslinių tyrimų situaciją, pastebima, jog trūksta fundamentalių tyrimų nagrinėjant oro srautų sąveikos procesų įtaką turboventiliatorių efektyvumui. Be to, atliekamuose tyrimuose su hibridiniais tokio tipo įrenginiais tebeieškoma sprendimų, kaip padidinti vėdinimo funkcionalumą, kai nepakanka vėjo srauto įrenginiui veikti. Siekiant detaliau nustatyti minėtų procesų svarbą, pristatomame tyrime dviem skirtingais metodais eksperimentiškai bandomi du skirtingo tipo turboventiliatoriai. Vienu atveju jų rotoriai sukami papildomu energijos šaltiniu, kitu atveju bandomi skirtingomis vėjo greičių sąlygomis. Tyrimų metu siekiama įvertinti ne tik bandomų įrenginių charakteristikas veikiant įprastomis sąlygomis, bet ir jų vėdinimo potencialą be vėjo srauto. Eksperimentinių tyrimų rezultatai parodė, jog įrenginiui veikiant įprastomis sąlygomis didelė dalis ištraukiamojo oro srauto veikiama rotorių sukimosi bei ežekcijos reiškinio. Straipsnyje pateiktos empirinės lygtys ir tyrimo rezultatai gali būti naudingi lyginant kitus eksperimentus bei tobulinant įrenginio funkcionalumą esant mažam vėjo greičiui.


Author(s):  
Koceila Abid ◽  
Moamar Sayed-Mouchaweh ◽  
Cornez Laurence

Prognostics can enhance the reliability and availability of industrial systems while reducing unscheduled faults and maintenance cost. In real industrial systems, data collected from the normal operation conditions of system is available, but there is a lack of historical degradation data is often unavailable. Hence, this paper proposes a general data-driven prognostic approach dealing with the lack of degradation data in the offline phase. First, features are computed on the collected raw signal, then One Class Support Vector Machine (OCSVM) is used to detect the degradation, this anomaly detection method is trained using only normal operation data. Then, features are ranked according to the selection criteria. The feature having the highest score is chosen as Health Indicator (HI). Finally an adaptive degradation model is applied for the prediction of the degradation evolution over time and Remaining Useful Life (RUL) estimation. The proposed approach is validated using run-to-failure vibration data collected from a high speed shaft bearings of a commercial wind turbine.


Sign in / Sign up

Export Citation Format

Share Document