Interleukin-12 abrogates the effector functions of regulatory T cells in an experimental colitis

2001 ◽  
Vol 120 (5) ◽  
pp. A521-A521
Author(s):  
Z LIU ◽  
P MAERTEN ◽  
S COLPAERT ◽  
J CEUPPENS ◽  
P RUTGEERTS
2001 ◽  
Vol 120 (5) ◽  
pp. A521
Author(s):  
Zhanju Liu ◽  
Phillippe Maerten ◽  
Stefaan Colpaert ◽  
Jan L. Ceuppens ◽  
Paul Rutgeerts

PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0185999 ◽  
Author(s):  
Masashi Ohno ◽  
Atsushi Nishida ◽  
Yoshihiko Sugitani ◽  
Kyohei Nishino ◽  
Osamu Inatomi ◽  
...  

2006 ◽  
Vol 56 (5) ◽  
pp. 641-648 ◽  
Author(s):  
François Ghiringhelli ◽  
Cedric Menard ◽  
Pierre Emmanuel Puig ◽  
Sylvain Ladoire ◽  
Stephan Roux ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0159705 ◽  
Author(s):  
Toshihiro Kanda ◽  
Atsushi Nishida ◽  
Masashi Ohno ◽  
Hirotsugu Imaeda ◽  
Takashi Shimada ◽  
...  

2019 ◽  
Vol 14 (4) ◽  
pp. 508-524 ◽  
Author(s):  
Heike Schmitt ◽  
Julia Ulmschneider ◽  
Ulrike Billmeier ◽  
Michael Vieth ◽  
Patrizio Scarozza ◽  
...  

Abstract Background and Aims The topically applied Toll-like receptor 9 [TLR9] agonist cobitolimod is a first-in-class DNA-based oligonucleotide with demonstrated therapeutic efficacy in clinical trials with ulcerative colitis [UC] patients. We here characterized its anti-inflammatory mechanism in UC. Methods Luminal cobitolimod administration was evaluated in an experimental dextran sodium sulfate [DSS]-induced colitis model. Cultured blood and mucosal cells from UC patients were treated with cobitolimod and analysed via microarray, quantitative real-time PCR, ELISA and flow cytometry. Intestinal slides of cobitolimod-treated UC patients were analysed by immunohistochemistry. Results Cobitolimod administration markedly suppressed experimental colitis activity, and microarray analyses demonstrated mucosal IL10 upregulation and suppression of IL17 signalling pathways. Cobitolimod treatment was associated with significant induction of mucosal IL10+Tr1 and Treg cells and suppression of Th17 cells. TLR9 knockout mice indicated that cobitolimod requires TLR9 signalling for IL10 induction. In UC patients, mucosal TLR9 levels correlated with severity of inflammation. Cobitolimod inhibited IL17A and IL17F, but increased IL10 and FoxP3 expression in cultured intestinal UC T cells. Cobitolimod-mediated suppression of intestinal IL17+T cells was abrogated by IL10 blockade. Furthermore, cobitolimod led to heightened IL10 production by wound healing macrophages. Immunohistochemistry in intestinal biopsies of cobitolimod-treated UC patients indicated increased presence of IL10+mononuclear and regulatory T cells, as well as reduction of IL17+cells. Conclusion Activation of TLR9 via cobitolimod might represent a novel therapeutic approach in UC, as it suppresses Th17 cells and induces anti-inflammatory IL10+macrophages and regulatory T cells, thereby modifying the dysregulated intestinal cytokine balance. Podcast This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast


2009 ◽  
Vol 78 (3) ◽  
pp. 1078-1088 ◽  
Author(s):  
Flávio V. Loures ◽  
Adriana Pina ◽  
Maíra Felonato ◽  
Eliseu F. Araújo ◽  
Katia R. M. Leite ◽  
...  

ABSTRACT Toll-like receptors (TLRs) present in innate immune cells recognize pathogen molecular patterns and influence immunity to control the host-parasite interaction. The objective of this study was to characterize the involvement of TLR4 in the innate and adaptive immunity to Para co c cidioides brasiliensis, the most important primary fungal pathogen of Latin America. We compared the responses of C3H/HeJ mice, which are naturally defective in TLR4 signaling, with those of C3H/HePas mice, which express functional receptors, after in vitro and in vivo infection with P. brasiliensis. Unexpectedly, we verified that TLR4-defective macrophages infected in vitro with P. brasiliensis presented decreased fungal loads associated with impaired synthesis of nitric oxide, interleukin-12 (IL-12), and macrophage chemotactic protein 1 (MCP-1). After intratracheal infection with 1 million yeasts, TLR4-defective mice developed reduced fungal burdens and decreased levels of pulmonary nitric oxide, proinflammatory cytokines, and antibodies. TLR4-competent mice produced elevated levels of IL-12 and tumor necrosis factor alpha (TNF-α), besides cytokines of the Th17 pattern, indicating a proinflammatory role for TLR4 signaling. The more severe infection of TLR4-normal mice resulted in increased influx of activated macrophages and T cells to the lungs and progressive control of fungal burdens but impaired expansion of regulatory T cells (Treg cells). In contrast, TLR4-defective mice were not able to clear their diminished fungal burdens totally, a defect associated with deficient activation of T-cell immunity and enhanced development of Treg cells. These divergent patterns of immunity, however, resulted in equivalent mortality rates, indicating that control of elevated fungal growth mediated by vigorous inflammatory reactions is as deleterious to the hosts as low fungal loads inefficiently controlled by limited inflammatory reactions.


1998 ◽  
Vol 187 (8) ◽  
pp. 1225-1234 ◽  
Author(s):  
Stephen J. Simpson ◽  
Samir Shah ◽  
Martina Comiskey ◽  
Ype P. de Jong ◽  
Baoping Wang ◽  
...  

The requirements for interleukin (IL)-12/signal transducer and activator of transcription (Stat)-4 signaling and induction of T cell–specific interferon (IFN)-γ expression in the development of T helper cell (Th)1–type pathology were examined in two different models of experimental colitis. In each model, abnormal reconstitution of the T cell compartment in immunodeficient mice by adoptive cell transfer leads to a wasting syndrome and inflammation of the colon, induced by IFN-γ and tumor necrosis factor (TNF)-α–producing T cells. We show here that treatment with anti–IL-12 antibodies in one of the models, or reconstitution with T cells from Stat-4–deficient (Stat-4null) mice in both models resulted in a milder disease in the majority of recipient animals, compared with those that were left untreated or that had been reconstituted with wt cells. Protected mice in each group also harbored lower frequencies of IFN-γ–producing T cells than did diseased mice, suggesting that effects on wasting and colitis resulted from the attenuation of IFN-γ expression by T cells. To test whether the development of pathogenic T cells in the two colitis models was directly dependent on T cell–specific IFN-γ expression, IFN-γnull donors were used for T cell reconstitution in each system. Surprisingly, large numbers of IFN-γnull–reconstituted mice developed wasting and colitis, which in many cases was of comparable severity to that seen in animals reconstituted with wt cells. Furthermore, T cells from these animals expressed TNF-α, demonstrating that they had retained the ability to produce another proinflammatory cytokine. Taken together, these results demonstrate that in some forms of chronic experimental colitis the development of pathogenic T cells is influenced predominantly, though not exclusively, by IL-12 via the actions of Stat-4 proteins. Furthermore, our data suggest that in the models of colitis studied here the effects of IL-12/Stat-4 or other Th1 promoting pathways are not limited to the induction of IFN-γ gene expression in T lymphocytes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Raquel Fernandez-Perez ◽  
Mercedes Lopez-Santalla ◽  
Rebeca Sánchez-Domínguez ◽  
Omaira Alberquilla ◽  
Irene Gutiérrez-Cañas ◽  
...  

Galectin-1 is a β-galactoside-binding lectin, ubiquitously expressed in stromal, epithelial, and different subsets of immune cells. Galectin-1 is the prototype member of the galectin family which shares specificity with β-galactoside containing proteins and lipids. Immunomodulatory functions have been ascribed to endogenous galectin-1 due to its induction of T cell apoptosis, inhibitory effects of neutrophils and T cell trafficking. Several studies have demonstrated that administration of recombinant galectin-1 suppressed experimental colitis by modulating adaptive immune responses altering the fate and phenotype of T cells. However, the role of endogenous galectin-1 in intestinal inflammation is poorly defined. In the present study, the well-characterized acute dextran sulfate sodium (DSS)-induced model of ulcerative colitis was used to study the function of endogenous galectin-1 during the development of intestinal inflammation. We found that galectin-1 deficient mice (Lgals1−/− mice) displayed a more severe intestinal inflammation, characterized by significantly elevated clinical scores, than their wild type counterparts. The mechanisms underlying the enhanced inflammatory response in colitic Lgals1−/− mice involved an altered Th17/Th1 profile of effector CD4+ T cells. Furthermore, increased frequencies of Foxp3+CD4+ regulatory T cells in colon lamina propria in Lgals1−/− mice were found. Strikingly, the exacerbated intestinal inflammatory response observed in Lgals1−/− mice was alleviated by adoptive transfer of wild type Foxp3+CD4+ regulatory T cells at induction of colitis. Altogether, these data highlight the importance of endogenous galectin-1 as a novel determinant in regulating T cell reactivity during the development of intestinal inflammation.


Sign in / Sign up

Export Citation Format

Share Document