531 METFORMIN SUPPRESSES MYELOID-DERIVED SUPPRESSOR CELLS AND M2 MACROPHAGES THROUGH INHIBITION OF THE MEVALONATE PATHWAY BY AMPK-ACTIVATION AND MTOR INHIBITION IN THE MICROENVIRONMENT OF COLITIC CANCER

2021 ◽  
Vol 160 (6) ◽  
pp. S-108
Author(s):  
Joyeon Kang ◽  
Soo Jung Park ◽  
Jae Jun Park ◽  
Jae Hee Cheon ◽  
Won Ho Kim ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Ying Wang ◽  
Haiyan Sun ◽  
Ningning Zhu ◽  
Xianxian Wu ◽  
Zhilin Sui ◽  
...  

Adenocarcinoma of the esophagogastric junction (AEG) is a fatal disease. Accumulating evidence indicates that, for a comprehensive understanding of AEG, studies should be conducted not only to investigate tumor cells, but also the tumor microenvironment (TME). In this study, we collected AEG patient data from The Cancer Genome Atlas, and used the CIBERSORT algorithm to analyze tumor-infiltrating immune cell profiles. The levels of CD8+ T cells and M0 and M2 macrophages were relatively high in AEG tissues. M2 macrophages were abundant in G3 tumors, and neutrophils were associated with poor prognosis. Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immunosuppressive cells which share a similar origin to neutrophils and macrophages. We further analyzed the levels of MDSCs in AEG patients and healthy donors (HD) using flow cytometry. MDSC levels were elevated at tumor sites, with polymorphonuclear MDSCs (PMN-MDSCs) being the predominant subtype. Circulating MDSCs partly represented cells at the tumor site. We observed that PMN-MDSC levels at tumor sites were positively correlated with advanced staging, low grade, lymph node metastasis, and HER2− status. Immunohistochemistry and immunofluorescence analyses indicated that activation of the STAT3 and NF-κB pathways in MDSCs may be a potential mechanism for cancer progression. Our studies provided a comprehensive perspective involving tumor-infiltrating immune cells, and detailed insights into the proportion of MDSCs in AEG and their clinical significance. Together, these findings may improve our current understanding of cancer progression involving tumor-infiltrating immune cells in the TME.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4135-4135
Author(s):  
Qingyan Au ◽  
Jun Fang ◽  
Anna Juncker-Jensen ◽  
Judy Kuo ◽  
Eric Leones ◽  
...  

Abstract Tumor microenvironment (TME) consists of heterogeneous subsets of myeloid cells and plays a crucial role in promoting cancer development and metastasis. Tumor associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) all contribute to an immunologically permissive microenvironment for cancer cells. On basis of the expression of surface markers, MDSC can be further subdivided into granulocytic MDSC (G-MDSC, polymorphonuclear MDSC) and monocytic MDSC (M-MDSC). In solid tumors, these different myeloid cell populations are well characterized and extensively studied. However, in hematological malignancies the role of myeloid cell subsets has been less studied. A recent study showed increase in MDSC in the bone marrow (BM) at time of diagnosis in acute myeloid leukemia (AML) patients (Sun H. et al. Int J Hematol. 2015). Significantly higher numbers of G-MDSC and M-MDSC were present at diagnosis in classic Hodgkin lymphoma (cHL) (Romano A. et al. Br J Haematol. 2015). The accumulation of TAMs was also reported to be associated with poor prognosis in cHL (Steidl C. et al. N Engl J Med. 2010). Collectively, these results indicate that the tumor-resident myeloid cells play an important clinical role, thus highlighting the need for monitoring and deeper characterization of various myeloid subsets in hematological malignancies, especially in the tumor FFPE sections. Herein, we report an analysis of MDSCs and 'protumoral' M2 macrophages using MultiOmyx hyperplexed immunofluorescence (IF) assay in 9 clinical samples diagnosed with HL. MultiOmyx is a proprietary multi 'omic' technology that enables detection and visualization of up to 60 biomarkers on a single 4µM FFPE slide (Gerdes MJ. et al. PNAS 2013). The HL FFPE sections were stained with a 13-marker panel including Arginase 1, CD11b, CD14, CD15, CD16, CD33, CD68, CD163, HLA-DR, CD3, CD4, CD8 and FOXP3. We observed that both M-MDSC (Fig 1A, characterized as CD11b+CD14+CD15-CD33+HLA-DR-) and G-MDSC (Fig 1B, identified as CD11b+CD14-CD15+CD33+HLA-DR-) accumulated within the TME in all 9 HL samples, with higher frequency of G-MDSCs over M-MDSCs. Arg1 expression was detected exclusively in G-MDSC population (Fig 1C). The data also revealed an abundant M2 macrophages (Fig 1D, characterized as CD68+CD163+) present in all HL samples. The detection of both MDSCs and M2 macrophages in HL samples supports the hypothesis that these cells contribute to the establishment of an immunosuppressive TME. Using the MultiOmyx proprietary algorithm, which takes into account the staining patterns, we will next quantify the counts and density of different tumor-resident myeloid subsets and measure the spatial distance between each subset of tumor-resident myeloid cells to the neoplastic Reed-Sternberg cells. Correlation study will also be performed to determine if significant correlations exist between MDSCs and TAMs and how these immunosuppressive myeloid cells are related to the Regulatory T cells (CD3+CD4+FOXP3+) in HL samples. In addition to HL samples, the same 13-plexed panel will be utilized to characterize the myeloid cell population from AML patients. TAMs and MDSCs are emerging as potential biomarkers for diagnosis and prognosis of cancer as well as therapeutic targets. The comprehensive myeloid cells phenotyping offered by MultiOmyx 13-plexed panel has the potential to monitor the changes of immunosuppressive myeloid cells in response to immune modulating drugs such as MDSC-targeting drugs (e.g. PDE-5 inhibitors, COX-2 inhibitors), TAM-targeting agents (e.g. anti-CSF1R) and combined therapy in treatment of lymphoma and leukemia. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiawei Li ◽  
Juntao Chen ◽  
Mingnan Zhang ◽  
Chao Zhang ◽  
Renyan Wu ◽  
...  

BackgroundMyeloid-derived suppressor cells (MDSCs) can prevent allograft rejection and induce immune tolerance in transplantation models. Previous studies have demonstrated that inhibition of mTOR signaling can enhance the MDSC protective effect in heart transplantation (HTx) by promoting MDSC expansion. In addition, mTOR inhibition is related to autophagy. The present study investigated the protective mechanism of mTOR-deficient monocytic MDSCs (M-MDSCs) in mouse HTx.MethodsMyeloid-specific mTOR conditional knockout mice were generated to obtain mTOR−/− M-MDSCs. The proliferation and immunosuppressive function of mTOR−/− M-MDSCs were determined by flow cytometry and T cell proliferation assays. The mTOR−/− M-MDSC intracellular autophagy levels were determined using western blotting and electron microscopy. RNAseq analysis was performed for wild-type (WT) and mTOR−/− M-MDSCs. Allogeneic HTx mouse model was established and treated with WT or mTOR−/− M-MDSCs. Enzyme-linked immunosorbent assay, flow cytometry, and immunohistochemistry assays were performed to determine WT and mTOR−/− M-MDSC-induced immune tolerance.ResultsThe mTOR deficiency promoted M-MDSC differentiation and enhanced intracellular autophagy levels in vivo and in vitro. mTOR deficiency also enhanced the immunosuppressive function of M-MDSCs. In addition, infusing with WT and mTOR−/− M-MDSCs prolonged cardiac allograft survival and established immune tolerance in recipient mice by inhibiting T cell activation and inducing regulatory T cells.ConclusionmTOR deficiency enhances the immunosuppressive function of M-MDSCs and prolongs mouse cardiac allograft survival.


2021 ◽  
Vol 8 ◽  
Author(s):  
Panpan Liu ◽  
Cong Peng ◽  
Xiang Chen ◽  
Lisha Wu ◽  
Mingzhu Yin ◽  
...  

Increased numbers of myeloid-derived suppressor cells (MDSCs) are involved in the development of psoriasis. Acitretin is used to treat psoriasis by regulating the proliferation and differentiation of keratinocytes, but little is known about the effect of acitretin on immune cells. Here, we reported that psoriasis patients had an expansion of MDSCs and monocytic-MDSCs (M-MDSCs) in peripheral blood and skin lesions. The number of MDSCs and M-MDSCs in peripheral blood correlated positively with disease severity. Acitretin could reduce the number of MDSCs and M-MDSCs in the peripheral blood of psoriasis patients as well as the spleen and skin lesions of IMQ-induced psoriasis-like model mice. Moreover, acitretin promoted the differentiation of MDSCs into macrophages, especially CD206+ M2 macrophages, and CD11c+MHC-II+ dendritic cells. Mechanically, acitretin dramatically increased the glutathione synthase (GSS) expression and glutathione (GSH) accumulation in MDSCs. Interruption of GSH synthesis abrogated the acitretin effect on MDSCs differentiation. Acitretin regulated GSS expression via activation of extracellular signal-regulated kinase 1/2. Thus, our data demonstrated a novel mechanism underlying the effects of acitretin on psoriasis by promoting MDSCs differentiation.


Sign in / Sign up

Export Citation Format

Share Document