Dynamic behavior of a cylindrical crack in a functionally graded interlayer under torsional loading

2001 ◽  
Vol 38 (42-43) ◽  
pp. 7473-7485 ◽  
Author(s):  
Chunyu Li ◽  
George J. Weng ◽  
Zhuping Duan
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Dinh Kien Nguyen ◽  
An Ninh Thi Vu ◽  
Ngoc Anh Thi Le ◽  
Vu Nam Pham

A bidirectional functionally graded Sandwich (BFGSW) beam model made from three distinct materials is proposed and its dynamic behavior due to nonuniform motion of a moving point load is investigated for the first time. The beam consists of three layers, a homogeneous core, and two functionally graded face sheets with material properties varying in both the thickness and longitudinal directions by power gradation laws. Based on the first-order shear deformation beam theory, a finite beam element is derived and employed in computing dynamic response of the beam. The element which used the shear correction factor is simple with the stiffness and mass matrices evaluated analytically. The numerical result reveals that the material distribution plays an important role in the dynamic response of the beam, and the beam can be designed to meet the desired dynamic magnification factor by appropriately choosing the material grading indexes. A parametric study is carried out to highlight the effects of the material distribution, the beam layer thickness and aspect ratios, and the moving load speed on the dynamic characteristics. The influence of acceleration and deceleration of the moving load on the dynamic behavior of the beam is also examined and highlighted.


Author(s):  
Stewart Chidlow ◽  
Mircea Teodorescu

This paper is concerned with the solution of the contact problem that results when a rigid punch is pressed into the surface of an inhomogeneously elastic solid comprising three distinct layers. The upper and lower layers of the solid are assumed to be homogeneous and are joined together by a functionally graded interlayer whose material properties progressively change from those of the coating to those of the substrate. By applying the Fourier transform to the governing boundary value problem (BVP), we may write the stresses and displacements within the solid in terms of indefinite integrals. In particular, the expressions for the horizontal and vertical displacements of the solid surface are used to formulate a coupled pair of integral equations which may be solved numerically to approximate the solution of the stamp problem. A selection of numerical results are then presented which illustrate the effects of friction on the contact problem and it is found that the presence of friction within the contact increases the magnitude of the maximum principal stress and changes its location. These observations indicate that material failure is much more likely to occur when friction is present within the contact as expected.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Jiawei Fu ◽  
Keqiang Hu ◽  
Linfang Qian ◽  
Zengtao Chen

The present work investigates the problem of a cylindrical crack in a functionally graded cylinder under thermal impact by using the non-Fourier heat conduction model. The theoretical derivation is performed by methods of Fourier integral transform, Laplace transform, and Cauchy singular integral equation. The concept of heat flux intensity factor is introduced to investigate the heat concentration degree around the crack tip quantitatively. The temperature field and the heat flux intensity factor in the time domain are obtained by transforming the corresponding quantities from the Laplace domain numerically. The effects of heat conduction model, functionally graded parameter, and thermal resistance of crack on the temperature distribution and heat flux intensity factor are studied. This work is beneficial for the thermal design of functionally graded cylinder containing a cylindrical crack.


Sign in / Sign up

Export Citation Format

Share Document