scholarly journals Age-related decline of learning and memory ability in rats - Comparison between place navigation task and allocentric place discrimination task

1999 ◽  
Vol 79 ◽  
pp. 257
Author(s):  
Takefumi Kikusui ◽  
Tsugio kaneko
Perfusion ◽  
2021 ◽  
pp. 026765912110070
Author(s):  
Yan Liu ◽  
Xuyao Zhu ◽  
Xiuxia Tong ◽  
Ziqiang Tan

Introduction: Cerebral ischemia/reperfusion injury (CI/R) is associated with high mortality and remains a large challenge in the clinic. Syringin is a bioactive compound with anti-inflammation, antioxidant, as well as neuroprotective effects. Nevertheless, whether syringin could protect against CI/R injury and its potential mechanism was still unclear. Methods: Rats were randomly divided into five groups: sham group, syringin group, CI/R group, CI/R + syringin group, and CI/R + syringin + LPS (TLR4 agonist) group. The CI/R injury rat model was established by the middle cerebral artery occlusion (MCAO). The learning and memory ability of rats was estimated by the Morris water maze test. Modified neurological severity score test (mNSS) and infarct volume were detected to assess the neuroprotective effect of syringin. ELISA and RT-qPCR were used to analyze the concentration of proinflammation cytokines and the expression of TLR4. Results: CI/R injury induced increased mNSS scores and decreased learning and memory ability of rats. Syringin could significantly protect against CI/R injury as it decreased the cerebral damage and improved the cognitive ability of CI/R rats. Moreover, syringin also reduced neuroinflammation of CI/R injury rats. Additionally, TLR4 was significantly upregulated in CI/R injury rats, which was suppressed by syringin. The activation of TLR4 reversed the neuroprotective effect of syringin in CI/R rats. Conclusion: Syringin decreased the inflammation reaction and cerebral damage in CI/R injury rats. The neuroprotective effect of syringin may be correlated with the inhibition of TLR4.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Xunhu Gu ◽  
Hanjun Wu ◽  
Yuqin Xie ◽  
Lijun Xu ◽  
Xu Liu ◽  
...  

Abstract Background Alzheimer's disease is a neurodegenerative disease. Previous study has reported that caspase-1/IL-1β is closely associated with Alzheimer's disease. However, the biological role of caspase-1/IL-1β in Alzheimer's disease has not been fully elucidated. This study aimed to explore the mechanism of action of caspase-1/IL-1β in Alzheimer's disease. Methods Mouse hippocampal neurones were treated with Aβ1-42 to induce Alzheimer's disease cell model. APP/PS1 mice and Aβ1-42-induced hippocampal neurones were treated with AC-YVAD-CMK (caspase-1 inhibitor). Spatial learning and memory ability of mice were detected by morris water maze. Flow cytometry, TUNEL staining, Thioflavin S staining and immunohistochemistry were performed to examine apoptosis and senile plaque deposition. Enzyme linked immunosorbent assay and western blot were performed to assess the levels of protein or cytokines. Co-Immunoprecipitation was performed to verify the interaction between Stargazin and GluA1. Results AC-YVAD-CMK treatment improved spatial learning and memory ability and reduced senile plaque deposition of APP/PS1 mice. Moreover, AC-YVAD-CMK promoted membrane transport of GluA1 in APP/PS1 mice. In vitro, Aβ1-42-induced hippocampal neurones exhibited an increase in apoptosis and a decrease in the membrane transport of GluA1, which was abolished by AC-YVAD-CMK treatment. In addition, Stargazin interacted with GluA1, which was repressed by caspase-1. Caspase-1/IL-1β inhibited membrane transport of GluA1 by inhibiting the interaction between Stargazin and GluA1. Conclusions Our data demonstrate that caspase-1/IL-1β represses membrane transport of GluA1 by inhibiting the interaction between Stargazin in Alzheimer's disease. Thus, caspase-1/IL-1β may be a target for Alzheimer's disease treatment.


2021 ◽  
Vol 13 ◽  
Author(s):  
Cong-Cong Qi ◽  
Xing-Xing Chen ◽  
Xin-Ran Gao ◽  
Jing-Xian Xu ◽  
Sen Liu ◽  
...  

Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline, psychiatric symptoms and behavioral disorders, resulting in disability, and loss of self-sufficiency.Objective: To establish an AD-like mice model, investigate the behavioral performance, and explore the potential mechanism.Methods: Streptozotocin (STZ, 3 mg/kg) was microinjected bilaterally into the dorsal hippocampus of C57BL/6 mice, and the behavioral performance was observed. The serum concentrations of insulin and nesfatin-1 were measured by ELISA, and the activation of hippocampal microglia and astrocytes was assessed by immunohistochemistry. The protein expression of several molecular associated with the regulation of synaptic plasticity in the hippocampus and the pre-frontal cortex (PFC) was detected via western blotting.Results: The STZ-microinjected model mice showed a slower bodyweight gain and higher serum concentration of insulin and nesfatin-1. Although there was no significant difference between groups with regard to the ability of balance and motor coordination, the model mice presented a decline of spontaneous movement and exploratory behavior, together with an impairment of learning and memory ability. Increased activated microglia was aggregated in the hippocampal dentate gyrus of model mice, together with an increase abundance of Aβ1−42 and Tau in the hippocampus and PFC. Moreover, the protein expression of NMDAR2A, NMDAR2B, SynGAP, PSD95, BDNF, and p-β-catenin/β-catenin were remarkably decreased in the hippocampus and the PFC of model mice, and the expression of p-GSK-3β (ser9)/GSK-3β were reduced in the hippocampus.Conclusion: A bilateral hippocampal microinjection of STZ could induce not only AD-like behavioral performance in mice, but also adaptive changes of synaptic plasticity against neuroinflammatory and endocrinal injuries. The underlying mechanisms might be associated with the imbalanced expression of the key proteins of Wnt signaling pathway in the hippocampus and the PFC.


2021 ◽  
Vol 14 ◽  
Author(s):  
Zhan-Qiang Zhuang ◽  
Zhe-Zhe Zhang ◽  
Yue-Ming Zhang ◽  
He-Hua Ge ◽  
Shi-Yu Sun ◽  
...  

Studies have shown that gestational inflammation accelerates age-related memory impairment in mother mice. An enriched environment (EE) can improve age-related memory impairment, whereas mitochondrial dysfunction has been implicated in the pathogenesis of brain aging. However, it is unclear whether an EE can counteract the accelerated age-related memory impairment induced by gestational inflammation and whether this process is associated with the disruption of mitochondrial quality control (MQC) processes. In this study, CD-1 mice received daily intraperitoneal injections of lipopolysaccharide (LPS, 50 μg/kg) or normal saline (CON group) during gestational days 15–17 and were separated from their offspring at the end of normal lactation. The mothers that received LPS were divided into LPS group and LPS plus EE (LPS-E) treatment groups based on whether the mice were exposed to an EE until the end of the experiment. At 6 and 18 months of age, the Morris water maze test was used to evaluate spatial learning and memory abilities. Quantitative reverse transcription polymerase chain reaction and Western blot were used to measure the messenber RNA (mRNA) and protein levels of MQC-related genes in the hippocampus, respectively. The results showed that all the aged (18 months old) mice underwent a striking decline in spatial learning and memory performances and decreased mRNA/protein levels related to mitochondrial dynamics (Mfn1/Mfn2, OPA1, and Drp1), biogenesis (PGC-1α), and mitophagy (PINK1/parkin) in the hippocampi compared with the young (6 months old) mice. LPS treatment exacerbated the decline in age-related spatial learning and memory and enhanced the reduction in the mRNA and protein levels of MQC-related genes but increased the levels of PGC-1α in young mice. Exposure to an EE could alleviate the accelerated decline in age-related spatial learning and memory abilities and the accelerated changes in MQC-related mRNA or protein levels resulting from LPS treatment, especially in aged mice. In conclusion, long-term exposure to an EE can counteract the accelerated age-related spatial cognition impairment modulated by MQC in CD-1 mother mice that experience inflammation during pregnancy.


2011 ◽  
Vol 422 ◽  
pp. 470-473
Author(s):  
Gui Shan Liu ◽  
Ze Sheng Zhang ◽  
Bo Yang ◽  
Wei He

Resveratrol (RVT) is a phytoalexin polyphenolic compound found in various plants, including grapes, berries and peanuts. Recently, studies have documented various health benefits of resveratrol including cardiovascular and cancer-chemopreventive properties. The aim of the present study was to demonstrate the effects of resveratrol on the learning and memory impairment. The senescence-accelerated mice (SAM) were introgastric gavage administrated resveratrol (25,100mg/(kg•bw)) for 60 days. The learning and memory behavior was assessed using open-field test while the parameters of oxidative stress assessed were malondialdehyde (MDA) and superoxide dismutases (SOD).The results showed that resveratrol significantly improved the learning and memory ability in open-field test. Further investigation showed that resveratrol restored SOD levels, but decreased MDA level in the mouce brain. These results indicated that the pharmacological action of RVT may offer a novel therapeutic strategy for the treatment of age-related conditions.


Sign in / Sign up

Export Citation Format

Share Document