senile plaque
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 16)

H-INDEX

40
(FIVE YEARS 3)

Author(s):  
Jaanaky Vigneswaran ◽  
Sivaloganathan Anogh Muthukumar ◽  
Mohamed Shafras ◽  
Geetika Pant

AbstractAccording to the World Health Organisation, as of 2019, globally around 50 million people suffer from dementia, with approximately another 10 million getting added to the list every year, wherein Alzheimer’s disease (AD) stands responsible for almost a whopping 60–70% for the existing number of cases. Alzheimer’s disease is one of the progressive, cognitive-declining, age-dependent, neurodegenerative diseases which is distinguished by histopathological symptoms, such as formation of amyloid plaque, senile plaque, neurofibrillary tangles, etc. Majorly four vital transcripts are identified in the AD complications which include Amyloid precursor protein (APP), Apolipoprotein E (ApoE), and two multi-pass transmembrane domain proteins—Presenilin 1 and 2. In addition, the formation of the abnormal filaments such as amyloid beta (Aβ) and tau and their tangling with some necessary factors contributing to the formation of plaques, neuroinflammation, and apoptosis which in turn leads to the emergence of AD. Although multiple molecular mechanisms have been elucidated so far, they are still counted as hypotheses ending with neuronal death on the basal forebrain and hippocampal area which results in AD. This review article is aimed at addressing the overview of the molecular mechanisms surrounding AD and the functional forms of the genes associated with it.


2021 ◽  
Vol 22 (20) ◽  
pp. 10907
Author(s):  
Lara Ordóñez-Gutiérrez ◽  
Gemma Fábrias ◽  
Josefina Casas ◽  
Francisco Wandosell

Senile plaque formation as a consequence of amyloid-β peptide (Aβ) aggregation constitutes one of the main hallmarks of Alzheimer’s disease (AD). This pathology is characterized by synaptic alterations and cognitive impairment. In order to either prevent or revert it, different therapeutic approaches have been proposed, and some of them are focused on diet modification. Modification of the ω-6/ω-3 fatty acids (FA) ratio in diets has been proven to affect Aβ production and senile plaque formation in the hippocampus and cortex of female transgenic (TG) mice. In these diets, linoleic acid is the main contribution of ω-6 FA, whereas alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) are the contributors of ω-3 FA. In the present work, we have explored the effect of ω-6/ω-3 ratio modifications in the diets of male double-transgenic APPswe/PS1ΔE9 (AD model) and wild-type mice (WT). Amyloid burden in the hippocampus increased in parallel with the increase in dietary ω-6/ω-3 ratio in TG male mice. In addition, there was a modification in the brain lipid profile proportional to the ω-6/ω-3 ratio of the diet. In particular, the higher the ω-6/ω-3 ratio, the lower the ceramides and higher the FAs, particularly docosatetraenoic acid. Modifications to the cortex lipid profile was mostly similar between TG and WT mice, except for gangliosides (higher levels in TG mice) and some ceramide species (lower levels in TG mice).


2021 ◽  
Author(s):  
Ralf Schober ◽  
Isabel Hilbrich ◽  
Carsten Jäger ◽  
Max Holzer

2021 ◽  
Vol 118 (25) ◽  
pp. e2100986118
Author(s):  
Zhourui Wu ◽  
Chun Chen ◽  
Seong Su Kang ◽  
Xia Liu ◽  
Xiaohuan Gu ◽  
...  

The molecular mechanism of Alzheimer’s disease (AD) pathogenesis remains obscure. Life and/or environmental events, such as traumatic brain injury (TBI), high-fat diet (HFD), and chronic cerebral hypoperfusion (CCH), are proposed exogenous risk factors for AD. BDNF/TrkB, an essential neurotrophic signaling for synaptic plasticity and neuronal survival, are reduced in the aged brain and in AD patients. Here, we show that environmental factors activate C/EBPβ, an inflammatory transcription factor, which subsequently up-regulates δ-secretase that simultaneously cleaves both APP and Tau, triggering AD neuropathological changes. These adverse effects are additively exacerbated in BDNF+/− or TrkB+/− mice. Strikingly, TBI provokes both senile plaque deposit and neurofibrillary tangles (NFT) formation in TrkB+/− mice, associated with augmented neuroinflammation and extensive neuronal loss, leading to cognitive deficits. Depletion of C/EBPβ inhibits TBI-induced AD-like pathologies in these mice. Remarkably, amyloid aggregates and NFT are tempospatially distributed in TrkB+/− mice brains after TBI, providing insight into their spreading in the progression of AD-like pathologies. Hence, our study revealed the roles of exogenous (TBI, HFD, and CCH) and endogenous (TrkB/BDNF) risk factors in the onset of AD-associated pathologies.


2021 ◽  
pp. 1-14
Author(s):  
Wei-hao Li ◽  
Lin-hua Gan ◽  
Fang-fang Ma ◽  
Rui-li Feng ◽  
Jiao Wang ◽  
...  

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disease. One of the pathologies of AD is the accumulation of amyloid-β (Aβ) to form senile plaques, leading to a decline in cognitive ability and a lack of learning and memory. However, the cause leading to Aβ aggregation is not well understood. Dendritic cell factor 1 (Dcf1) shows a high expression in the entorhinal cortex neurons and neurofibrillary tangles in AD patients. Objective: Our goal is to investigate the effect of Dcf1 on Aβ aggregation and memory deficits in AD development. Methods: The mouse and Drosophila AD model were used to test the expression and aggregation of Aβ, senile plaque formation, and pathological changes in cognitive behavior during dcf1 knockout and expression. We finally explored possible drug target effects through intracerebroventricular delivery of Dcf1 antibodies. Results: Deletion of Dcf1 resulted in decreased Aβ42 level and deposition, and rescued AMPA Receptor (GluA2) levels in the hippocampus of APP-PS1-AD mice. In Aβ42 AD Drosophila, the expression of Dcf1 in Aβ42 AD flies aggravated the formation and accumulation of senile plaques, significantly reduced its climbing ability and learning-memory. Data analysis from all 20 donors with and without AD patients aged between 80 and 90 indicated a high-level expression of Dcf1 in the temporal neocortex. Dcf1 contributed to Aβ aggregation by UV spectroscopy assay. Intracerebroventricular delivery of Dcf1 antibodies in the hippocampus reduced the area of senile plaques and reversed learning and memory deficits in APP-PS1-AD mice. Conclusion: Dcf1 causes Aβ-plaque accumulation, inhibiting dcf1 expression could potentially offer therapeutic avenues.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Xunhu Gu ◽  
Hanjun Wu ◽  
Yuqin Xie ◽  
Lijun Xu ◽  
Xu Liu ◽  
...  

Abstract Background Alzheimer's disease is a neurodegenerative disease. Previous study has reported that caspase-1/IL-1β is closely associated with Alzheimer's disease. However, the biological role of caspase-1/IL-1β in Alzheimer's disease has not been fully elucidated. This study aimed to explore the mechanism of action of caspase-1/IL-1β in Alzheimer's disease. Methods Mouse hippocampal neurones were treated with Aβ1-42 to induce Alzheimer's disease cell model. APP/PS1 mice and Aβ1-42-induced hippocampal neurones were treated with AC-YVAD-CMK (caspase-1 inhibitor). Spatial learning and memory ability of mice were detected by morris water maze. Flow cytometry, TUNEL staining, Thioflavin S staining and immunohistochemistry were performed to examine apoptosis and senile plaque deposition. Enzyme linked immunosorbent assay and western blot were performed to assess the levels of protein or cytokines. Co-Immunoprecipitation was performed to verify the interaction between Stargazin and GluA1. Results AC-YVAD-CMK treatment improved spatial learning and memory ability and reduced senile plaque deposition of APP/PS1 mice. Moreover, AC-YVAD-CMK promoted membrane transport of GluA1 in APP/PS1 mice. In vitro, Aβ1-42-induced hippocampal neurones exhibited an increase in apoptosis and a decrease in the membrane transport of GluA1, which was abolished by AC-YVAD-CMK treatment. In addition, Stargazin interacted with GluA1, which was repressed by caspase-1. Caspase-1/IL-1β inhibited membrane transport of GluA1 by inhibiting the interaction between Stargazin and GluA1. Conclusions Our data demonstrate that caspase-1/IL-1β represses membrane transport of GluA1 by inhibiting the interaction between Stargazin in Alzheimer's disease. Thus, caspase-1/IL-1β may be a target for Alzheimer's disease treatment.


Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 254
Author(s):  
Jayeong Hwang ◽  
Kumju Youn ◽  
Gyutae Lim ◽  
Jinhyuk Lee ◽  
Dong Hyun Kim ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disease conceptualized as a clinical-biological neurodegenerative construct where amyloid-beta pathophysiology is supposed to play a role. The loss of cognitive functions is mostly characterized by the rapid hydrolysis of acetylcholine by cholinesterases including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Moreover, both enzymes are responsible for non-catalytic actions such as interacting with amyloid β peptide (Aβ) which further leads to promote senile plaque formation. In searching for a natural cholinesterase inhibitor, the present study focused on two isocoumarines from hydrangea, thunberginol C (TC) and hydrangenol 8-O-glucoside pentaacetate (HGP). Hydrangea-derived compounds were demonstrated to act as dual inhibitors of both AChE and BChE. Furthermore, the compounds exerted selective and non-competitive mode of inhibition via hydrophobic interaction with peripheral anionic site (PAS) of the enzymes. Overall results demonstrated that these natural hydrangea-derived compounds acted as selective dual inhibitors of AChE and BChE, which provides the possibility of potential source of new type of anti-cholinesterases with non-competitive binding property with PAS.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1569
Author(s):  
Keiko Akasaka-Manya ◽  
Hiroshi Manya

The number of people with dementia is increasing rapidly due to the increase in the aging population. Alzheimer’s disease (AD) is a type of neurodegenerative dementia caused by the accumulation of abnormal proteins. Genetic mutations, smoking, and several other factors have been reported as causes of AD, but alterations in glycans have recently been demonstrated to play a role in AD. Amyloid-β (Aβ), a cleaved fragment of APP, is the source of senile plaque, a pathological feature of AD. APP has been reported to undergo N- and O-glycosylation, and several Polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) have been shown to have catalytic activity for the transfer of GalNAc to APP. Since O-glycosylation in the proximity of a cleavage site in many proteins has been reported to be involved in protein processing, O-glycans may affect the cleavage of APP during the Aβ production process. In this report, we describe new findings on the O-glycosylation of APP and Aβ production.


2020 ◽  
Vol 18 (7) ◽  
pp. 552-562 ◽  
Author(s):  
Hareram Birla ◽  
Tarun Minocha ◽  
Gaurav Kumar ◽  
Anamika Misra ◽  
Sandeep Kumar Singh

Alzheimer’s disease (AD) is one of the life-threatening neurodegenerative disorders in the elderly (>60 years) and incurable across the globe to date. AD is caused by the involvement of various genetic, environmental and lifestyle factors that affect neuronal cells to degenerate over the period of time. The oxidative stress is engaged in the pathogenesis of various disorders and its key role is also linked to the etiology of AD. AD is attributed by neuronal loss, abnormal accumulation of Amyloid-β (Aβ) and neurofibrillary tangles (NFTs) with severe memory impairments and other cognitive dysfunctions which lead to the loss of synapses and neuronal death and eventual demise of the individual. Increased production of reactive oxygen species (ROS), loss of mitochondrial function, altered metal homeostasis, aberrant accumulation of senile plaque and mitigated antioxidant defense mechanism all are indulged in the progression of AD. In spite of recent advances in biomedical research, the underlying mechanism of disruption of redox balance and the actual source of oxidative stress is still obscure. This review highlights the generation of ROS through different mechanisms, the role of some important metals in the progression of AD and free radical scavenging by endogenous molecule and supplementation of nutrients in AD.


2020 ◽  
Vol 190 (6) ◽  
pp. 1323-1331 ◽  
Author(s):  
Nobuto Kakuda ◽  
Haruyasu Yamaguchi ◽  
Kohei Akazawa ◽  
Saori Hata ◽  
Toshiharu Suzuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document