scholarly journals Effects of Rikkunshi-to on signal transduction pathway in gastric smooth muscle isolated from diabetic rats

1997 ◽  
Vol 73 ◽  
pp. 221
Author(s):  
Yasushi Sakai ◽  
Koji Nobe ◽  
Yoshiaki Maruyama ◽  
Kazutaka Momose ◽  
Ikuo Homma
1996 ◽  
Vol 315 (2) ◽  
pp. 213-219 ◽  
Author(s):  
Pierre Cuq ◽  
Robert Zumbihl ◽  
Thierry Fischer ◽  
Bruno Rouot ◽  
Jean-Pierre Bali ◽  
...  

2007 ◽  
Vol 292 (1) ◽  
pp. C423-C431 ◽  
Author(s):  
Li Liu ◽  
Yukisato Ishida ◽  
Gbolahan Okunade ◽  
Gail J. Pyne-Geithman ◽  
Gary E. Shull ◽  
...  

We previously showed that plasma membrane Ca2+-ATPase (PMCA) activity accounted for 25–30% of relaxation in bladder smooth muscle ( 8 ). Among the four PMCA isoforms only PMCA1 and PMCA4 are expressed in smooth muscle. To address the role of these isoforms, we measured cytosolic Ca2+ ([Ca2+]i) using fura-PE3 and simultaneously measured contractility in bladder smooth muscle from wild-type (WT), Pmca1+/−, Pmca4+/−, Pmca4−/−, and Pmca1+/− Pmca4−/− mice. There were no differences in basal [Ca2+]i values between bladder preparations. KCl (80 mM) elicited both larger forces (150–190%) and increases in [Ca2+]i (130–180%) in smooth muscle from Pmca1+/− and Pmca1+/− Pmca4−/− bladders than those in WT or Pmca4−/−. The responses to carbachol (CCh: 10 μM) were also greater in Pmca1+/− (120–150%) than in WT bladders. In contrast, the responses in Pmca4−/− and Pmca1+/− Pmca4−/− bladders to CCh were significantly smaller (40–50%) than WT. The rise in half-times of force and [Ca2+]i increases in response to KCl and CCh, and the concomitant half-times of their decrease upon washout of agonist were prolonged in Pmca4−/− (130–190%) and Pmca1+/− Pmca4−/− (120–250%) bladders, but not in Pmca1+/− bladders with respect to WT. Our evidence indicates distinct isoform functions with the PMCA1 isoform involved in overall Ca2+ clearance, while PMCA4 is essential for the [Ca2+]i increase and contractile response to the CCh receptor-mediated signal transduction pathway.


Sign in / Sign up

Export Citation Format

Share Document