Silver- indium- cadmium- tin aerosol releases and control rod behaviour in PWR accidental conditions

1999 ◽  
Vol 30 ◽  
pp. S109-S110 ◽  
Author(s):  
B. Rabu ◽  
C. Pagano ◽  
A. Boucenna ◽  
E. Addes ◽  
R. Dubourg ◽  
...  
Keyword(s):  
2018 ◽  
Vol 3 (3) ◽  
pp. 230
Author(s):  
Salakhova A.A. ◽  
Suvorov V.A. ◽  
Firsova A. I. ◽  
Belozerov V.I. ◽  
Milinchuk V.K.

The results of investigations of the kinetics of hydrogen generation compositions with aluminum, chemical activators (hydrated sodium metasilicate, oxide and calcium hydroxide) boric acid. Aluminium and its alloys used for the manufacture of protective sheaths of fuel elements and control rod protection system management, pipelines, tanks, and various support structures in the active zone of atomic reactors RBMK, research water-cooled reactors. The aluminum is protected from direct contact with water and steam surface layer of metal oxide having a high corrosion resistance at high temperatures in powerful radiation fields. However, after removal or when the discontinuity of the oxide layer of activated metal efficiently decompose water to hydrogen. It is established that the hydrogen aluminum-containing compositions is dependent on the concentration of boric acid. The discovery of the involvement of boric acid in these reactions expands the ideas about regularities of chemical processes of formation of hydrogen flowing in the water coolant of VVER reactors with the participation of the corrective additives and impurities.


Author(s):  
Guangwen Bi ◽  
Chuntao Tang ◽  
Bo Yang

Elimination of soluble boron will be a challenge to reactor operation for PWR. This paper is to promote a control strategy of soluble boron-free operation for a small PWR, through selection of burnable poison (BP), BP loading and control rod loading, based on the reactivity balance and manage requirement. The analysis for on-power operation and shutdown condition indicated that this strategy could be suitable for long-term and short-term reactivity and power distribution control for soluble boron-free operation.


2020 ◽  
Vol 22 (3) ◽  
pp. 104
Author(s):  
Prasetyo Haryo Sadewo ◽  
Puradwi Ismu Wahyono

Kartini Research Reactor, which is situated in Yogyakarta, is a 100 kW TRIGA (Training, Research, and Isotope Production by General Atomic)-type reactor mainly used for educational and training purposes. A system for remote learning on nuclear reactor physics named the Internet Rector Laboratory has been developed and is fully operational since 2019. To enrich its curriculum, a new practicum module has been developed, that can be immediately implemented and does not require any additional equipment or materials. To ensure safety in reactor kinetics and radiation protection, a safety analysis on the implementation of the practicum module has been conducted using MCNP and ORIGEN utilizing the current conditions of the reactor regarding its fuel burnup and control rod positions at a certain power level. Based on the results of the analysis, the practicum is safe to perform from a neutronic and radiation protection perspective. Given the long half-life and the large amount of radiation exposure that comes from activation products of iron, it is recommended that only cadmium, boron, graphite, and aluminum are allowed to be irradiated during the practicum.Keywords: Internet Reactor Laboratory, Activation Product, Radiation Protection, Reactor Safety


2020 ◽  
Vol 239 ◽  
pp. 22011 ◽  
Author(s):  
Peng Hong Liem ◽  
Zuhair ◽  
Donny Hartanto

The results of criticality, sensitivity and uncertainty (S\U) analyses on the first core criticality of the Indonesian 30 MWth Multipurpose Reactor RSG GAS (MPR-30) using the recent nuclear data libraries (ENDF/B-VII.1 and JENDL-4.0) and analytical tools available at present (WHISPER-1.1) are presented. Two groups of criticality benchmark cases were carefully selected from the experiments conducted during the first criticality approach and control rod calibrations. The C/E values of effective neutron multiplication factor (k) for the worst case was found around 1.005. Large negative sensitivities were found in (n,e-mail:γ) reaction of H-1, U-235, Al-27, U-238 and Be-9 while large positive sensitivities were found in U-235 (total nu and fission), H-1 (elastic), Be-9 (free gas, elastic) and H-1 S(α,β) (lwtr.20t, inelastic). The S\U analysis results concluded that the uncertainties of k originated from the nuclear data were found around 0.6% which covered well the [C/E-1] values. Differences in the sensitivities amongst the two nuclear data libraries were also identified, and recommendation for improving the nuclear data library was given.


Nukleonika ◽  
2014 ◽  
Vol 59 (2) ◽  
pp. 67-72 ◽  
Author(s):  
Farahnaz Saadatian-derakhshandeh ◽  
Omid Safarzadeh ◽  
Amir Saiid Shirani

Abstract One of the main issues in safety and control systems design of power and research reactors is to prevent accidents or reduce the imposed hazard. Control rod worth plays an important role in safety and control of reactors. In this paper, we developed a justifiable approach called D4D4 to estimate the control rod worth of a VVER-1000 reactor that enables to perform the best estimate analysis and reduce the conservatism that utilize DRAGON4 and DONJON4. The results are compared with WIMS-D4/CITATION to show the effectiveness and superiority of the developed package in predicting reactivity worth of the rod and also other reactor physics parameters of the VVER-1000 reactor. The results of this study are in good agreement with the plant's FSAR.


2007 ◽  
Vol 34 (3) ◽  
pp. 207-212 ◽  
Author(s):  
Alejandro Castillo ◽  
Juan José Ortiz ◽  
José Luis Montes ◽  
Raúl Perusquía

Sign in / Sign up

Export Citation Format

Share Document