scholarly journals Isolation and complete amino acid sequence of the mitochondrial ATP synthase epsilon-subunit of the yeast Saccharomyces cerevisiae.

1991 ◽  
Vol 266 (2) ◽  
pp. 723-727
Author(s):  
G Arselin ◽  
J C Gandar ◽  
B Guérin ◽  
J Velours
Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 147-154 ◽  
Author(s):  
Douglas J Kominsky ◽  
Peter E Thorsness

Abstract Organisms that can grow without mitochondrial DNA are referred to as “petite-positive” and those that are inviable in the absence of mitochondrial DNA are termed “petite-negative.” The petite-positive yeast Saccharomyces cerevisiae can be converted to a petite-negative yeast by inactivation of Yme1p, an ATP- and metal-dependent protease associated with the inner mitochondrial membrane. Suppression of this yme1 phenotype can occur by virtue of dominant mutations in the α- and γ-subunits of mitochondrial ATP synthase. These mutations are similar or identical to those occurring in the same subunits of the same enzyme that converts the petite-negative yeast Kluyveromyces lactis to petite-positive. Expression of YME1 in the petite-negative yeast Schizosaccharomyces pombe converts this yeast to petite-positive. No sequence closely related to YME1 was found by DNA-blot hybridization to S. pombe or K. lactis genomic DNA, and no antigenically related proteins were found in mitochondrial extracts of S. pombe probed with antisera directed against Yme1p. Mutations that block the formation of the F1 component of mitochondrial ATP synthase are also petite-negative. Thus, the F1 complex has an essential activity in cells lacking mitochondrial DNA and Yme1p can mediate that activity, even in heterologous systems.


2005 ◽  
Vol 280 (23) ◽  
pp. 22418-22424 ◽  
Author(s):  
Neeti Puri ◽  
Jie Lai-Zhang ◽  
Scott Meier ◽  
David M. Mueller

The mitochondrial F1F0-ATP synthase is a multimeric enzyme complex composed of at least 16 unique peptides with an overall molecular mass of ∼600 kDa. F1-ATPase is composed of α3β3γδϵ with an overall molecular mass of 370 kDa. The genes encoding bovine F1-ATPase have been expressed in a quintuple yeast Saccharomyces cerevisiae deletion mutant (ΔαΔβΔγΔδΔϵ). This strain expressing bovine F1 is unable to grow on medium containing a non-fermentable carbon source (YPG), indicating that the enzyme is non-functional. However, daughter strains were easily selected for growth on YPG medium and these were evolved for improved growth on YPG medium. The evolution of the strains was presumably due to mutations, but mutations in the genes encoding the subunits of the bovine F1-ATPase were not required for the ability of the cell to grow on YPG medium. The bovine enzyme expressed in yeast was partially purified to a specific activity of about half of that of the enzyme purified from bovine heart mitochondria. These results indicate that the molecular machinery required for the assembly of the mitochondrial ATP synthase is conserved from bovine and yeast and suggest that yeast may be useful for the expression, mutagenesis, and analysis of the mammalian F1- or F1F0-ATP synthase.


Biochemistry ◽  
1992 ◽  
Vol 31 (49) ◽  
pp. 12451-12454 ◽  
Author(s):  
Tomihiko Higuti ◽  
Kayo Kuroiwa ◽  
Yoshihiro Kawamura ◽  
Yutaka Yoshihara

1988 ◽  
Vol 8 (3) ◽  
pp. 1282-1289
Author(s):  
W Haggren ◽  
D Kolodrubetz

The high-mobility-group (HMG) proteins, a group of nonhistone chromatin-associated proteins, have been extensively characterized in higher eucaryotic cells. To test the biological function of an HMG protein, we have cloned and mutagenized a gene encoding an HMG-like protein from the yeast Saccharomyces cerevisiae. A yeast genomic DNA library was screened with an oligonucleotide designed to hybridize to any yeast gene containing an amino acid sequence conserved in several higher eucaryotic HMG proteins. DNA sequencing and Northern (RNA) blot analysis revealed that one gene, called ACP2 (acidic protein 2), synthesizes a poly(A)+ RNA in S. cerevisiae which encodes a 27,000-molecular-weight protein whose amino acid sequence is homologous to those of calf HMG1 and HMG2 and trout HMGT proteins. Standard procedures were used to construct a diploid yeast strain in which one copy of the ACP2 gene was mutated by replacement with the URA3 gene. When this diploid was sporulated and dissected, only half of the spores were viable. About half of the nonviable spores proceeded through two or three cell divisions and then stopped dividing; the rest did not germinate at all. None of the viable spores contained the mutant ACP2 gene, thus proving that the protein encoded by ACP2 is required for cell viability. The results presented here demonstrate that an HMG-like protein has an essential physiological function.


1987 ◽  
Vol 7 (12) ◽  
pp. 4390-4399 ◽  
Author(s):  
C M Moehle ◽  
R Tizard ◽  
S K Lemmon ◽  
J Smart ◽  
E W Jones

The PRB1 gene of Saccharomyces cerevisiae encodes the vacuolar endoprotease protease B. We have determined the DNA sequence of the PRB1 gene and the amino acid sequence of the amino terminus of mature protease B. The deduced amino acid sequence of this serine protease shares extensive homology with those of subtilisin, proteinase K, and related proteases. The open reading frame of PRB1 consists of 635 codons and, therefore, encodes a very large protein (molecular weight, greater than 69,000) relative to the observed size of mature protease B (molecular weight, 33,000). Examination of the gene sequence, the determined amino-terminal sequence, and empirical molecular weight determinations suggests that the preproenzyme must be processed at both amino and carboxy termini and that asparagine-linked glycosylation occurs at an unusual tripeptide acceptor sequence.


1988 ◽  
Vol 8 (10) ◽  
pp. 4314-4321
Author(s):  
S J Brown ◽  
D D Rhoads ◽  
M J Stewart ◽  
B Van Slyke ◽  
I T Chen ◽  
...  

We describe a Drosophila DNA clone of tandemly duplicated genes encoding an amino acid sequence nearly identical to human ribosomal protein S14 and yeast rp59. Despite their remarkably similar exons, the locations and sizes of introns differ radically among the Drosophila, human, and yeast (Saccharomyces cerevisiae) ribosomal protein genes. Transcripts of both Drosophila RPS14 genes were detected in embryonic and adult tissues and are the same length as mammalian S14 message. Drosophila RPS14 was mapped to region 7C5-9 on the X chromosome. This interval also encodes a previously characterized Minute locus, M(1)7C.


1988 ◽  
Vol 8 (10) ◽  
pp. 4314-4321 ◽  
Author(s):  
S J Brown ◽  
D D Rhoads ◽  
M J Stewart ◽  
B Van Slyke ◽  
I T Chen ◽  
...  

We describe a Drosophila DNA clone of tandemly duplicated genes encoding an amino acid sequence nearly identical to human ribosomal protein S14 and yeast rp59. Despite their remarkably similar exons, the locations and sizes of introns differ radically among the Drosophila, human, and yeast (Saccharomyces cerevisiae) ribosomal protein genes. Transcripts of both Drosophila RPS14 genes were detected in embryonic and adult tissues and are the same length as mammalian S14 message. Drosophila RPS14 was mapped to region 7C5-9 on the X chromosome. This interval also encodes a previously characterized Minute locus, M(1)7C.


Sign in / Sign up

Export Citation Format

Share Document