scholarly journals Novel malonamidases in Bradyrhizobium japonicum. Purification, characterization, and immunological comparison.

1994 ◽  
Vol 269 (11) ◽  
pp. 8014-8021
Author(s):  
Y.S. Kim ◽  
S.W. Kang
Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 941
Author(s):  
Ewa Szpunar-Krok ◽  
Anna Wondołowska-Grabowska ◽  
Dorota Bobrecka-Jamro ◽  
Marta Jańczak-Pieniążek ◽  
Andrzej Kotecki ◽  
...  

Soybean is a valuable protein and oilseed crop ranked among the most significant of the major crops. Field experiments were carried out in 2016–2019 in South-East Poland. The influence of soybean cultivars (Aldana, Annushka), nitrogen fertilizer (0, 30, 60 kg∙ha−1 N) and inoculation with B. japonicum (control, HiStick® Soy, Nitragina) on the content of fatty acids (FA) in soybean seeds was investigated in a three-factorial experiment. This study confirms the genetic determinants of fatty acid composition in soybean seeds and their differential accumulation levels for C16:0, C16:1, C18:1n9, C18:2, C18:3, and C20:0 as well saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids. Increasing the rate from 30 to 60 kg ha−1 N did not produce the expected changes, suggesting the use of only a “starter” rate of 30 kg ha−1 N. Inoculation of soybean seeds with a strain of Bradyrhizobium japonicum (HiStick® Soy, BASF, Littlehampton, UK and Nitragina, Institute of Soil Science and Plant Cultivation–State Research Institute, Puławy, Poland) is recommended as it will cause a decrease in SFA and C16:0 acid levels. This is considered nutritionally beneficial as its contribution to total fatty acids determines the hypercholesterolemic index, and it is the third most accumulated fatty acid in soybean seeds. The interaction of cultivars and inoculation formulation on fatty acid content of soybean seeds was demonstrated. An increase in the value of C16:0 content resulted in a decrease in the accumulation of C18:1, C18:2, and C18:3 acids. The content of each decreased by almost one unit for every 1% increase in C16:0 content. The dominant effect of weather conditions on the FA profile and C18:2n6/C18:3n3 ratio was demonstrated. This suggests a need for further evaluation of the genetic progress of soybean cultivars with respect to fatty acid composition and content under varying habitat conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1518
Author(s):  
Alberto Mongolo Júnior ◽  
Felipe Girotto Campos ◽  
Gustavo Ribeiro Barzotto ◽  
Jonas Akenaton Venturineli Pagassini ◽  
Maria Aparecida Ribeiro Vieira ◽  
...  

Reactive oxygen species are generated during the processes of photosynthesis and nitrate reduction, which can compromise the integrity of biomolecules and membranes. During the vegetative phase of Fabaceae species, around half of translocated carbohydrate is used for nodule growth, while the other half returns to the aerial part with nitrogen incorporated. These sugars may be yet involved with membrane stabilization, signaling, and activation of important genetic pathways for plant development. Thus, the aim was to study the adjustments of the photosynthetic and antioxidant systems and the accumulation of carbohydrates and biomass in Glycine–Bradyrhizobium cultivated with nitrate (NO3−). Four treatments were evaluated in completely randomized blocks. Glycine–Bradyrhizobium was grown with 1.7 mM of NO3− (GB: 1.7 mM NO3−) and without NO3− (GB: 0 mM NO3−), and Glycine was grown with 1.7 mM of NO3− (G: 1.7 mM NO3−) and without NO3− (G: 0 mM NO3−). Glycine–Bradyrhizobium symbiosis contributes to photosynthetic metabolism and total sugars, reduces the action of antioxidant enzymes, and minimizes the use of nitrate in soybean cultivation.; Glycine–Bradyrhizobium with nitrate provided greater plant dry mass in the vegetative phase, along with increased enzymatic activity and reduced nodule mass.


Sign in / Sign up

Export Citation Format

Share Document