scholarly journals Role of the phenylalanine B25 side chain in directing insulin interaction with its receptor. Steric and conformational effects.

1986 ◽  
Vol 261 (16) ◽  
pp. 7332-7341 ◽  
Author(s):  
S H Nakagawa ◽  
H S Tager
2015 ◽  
Vol 1 (7) ◽  
pp. e1500263 ◽  
Author(s):  
Akihiko Nakamura ◽  
Takuya Ishida ◽  
Katsuhiro Kusaka ◽  
Taro Yamada ◽  
Shinya Fushinobu ◽  
...  

Hydrolysis of carbohydrates is a major bioreaction in nature, catalyzed by glycoside hydrolases (GHs). We used neutron diffraction and high-resolution x-ray diffraction analyses to investigate the hydrogen bond network in inverting cellulase PcCel45A, which is an endoglucanase belonging to subfamily C of GH family 45, isolated from the basidiomycete Phanerochaete chrysosporium. Examination of the enzyme and enzyme-ligand structures indicates a key role of multiple tautomerizations of asparagine residues and peptide bonds, which are finally connected to the other catalytic residue via typical side-chain hydrogen bonds, in forming the “Newton’s cradle”–like proton relay pathway of the catalytic cycle. Amide–imidic acid tautomerization of asparagine has not been taken into account in recent molecular dynamics simulations of not only cellulases but also general enzyme catalysis, and it may be necessary to reconsider our interpretation of many enzymatic reactions.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jiyong Su ◽  
Karl Forchhammer

A highly conserved arginine residue is close to the catalytic center of PPM/PP2C-type protein phosphatases. Different crystal structures of PPM/PP2C homologues revealed that the guanidinium side chain of this arginine residue can adopt variable conformations and may bind ligands, suggesting an important role of this residue during catalysis. In this paper, we randomly mutated Arginine 13 of tPphA, a PPM/PP2C-type phosphatase from Thermosynechococcus elongatus, and obtained 18 different amino acid variants. The generated variants were tested towards p-nitrophenyl phosphate and various phosphopeptides. Towards p-nitrophenyl phosphate as substrate, twelve variants showed 3–7 times higher Km values than wild-type tPphA and four variants (R13D, R13F, R13L, and R13W) completely lost activity. Strikingly, these variants were still able to dephosphorylate phosphopeptides, although with strongly reduced activity. The specific inability of some Arg-13 variants to hydrolyze p-nitrophenyl phosphate highlights the importance of additional substrate interactions apart from the substrate phosphate for catalysis. The properties of the R13 variants indicate that this residue assists in substrate binding.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2983 ◽  
Author(s):  
Prabhakaran Soundararajan ◽  
Jung Kim

Glucosinolates (GSL) are naturally occurring β-d-thioglucosides found across the cruciferous vegetables. Core structure formation and side-chain modifications lead to the synthesis of more than 200 types of GSLs in Brassicaceae. Isothiocyanates (ITCs) are chemoprotectives produced as the hydrolyzed product of GSLs by enzyme myrosinase. Benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane ([1-isothioyanato-4-(methyl-sulfinyl) butane], SFN) are potential ITCs with efficient therapeutic properties. Beneficial role of BITC, PEITC and SFN was widely studied against various cancers such as breast, brain, blood, bone, colon, gastric, liver, lung, oral, pancreatic, prostate and so forth. Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor limits the tumor progression. Induction of ARE (antioxidant responsive element) and ROS (reactive oxygen species) mediated pathway by Nrf2 controls the activity of nuclear factor-kappaB (NF-κB). NF-κB has a double edged role in the immune system. NF-κB induced during inflammatory is essential for an acute immune process. Meanwhile, hyper activation of NF-κB transcription factors was witnessed in the tumor cells. Antagonistic activity of BITC, PEITC and SFN against cancer was related with the direct/indirect interaction with Nrf2 and NF-κB protein. All three ITCs able to disrupts Nrf2-Keap1 complex and translocate Nrf2 into the nucleus. BITC have the affinity to inhibit the NF-κB than SFN due to the presence of additional benzyl structure. This review will give the overview on chemo preventive of ITCs against several types of cancer cell lines. We have also discussed the molecular interaction(s) of the antagonistic effect of BITC, PEITC and SFN with Nrf2 and NF-κB to prevent cancer.


2018 ◽  
Vol 30 (9) ◽  
pp. 2945-2953 ◽  
Author(s):  
Alexander Giovannitti ◽  
Iuliana P. Maria ◽  
David Hanifi ◽  
Mary J. Donahue ◽  
Daniel Bryant ◽  
...  

Author(s):  
S. Maitz ◽  
G. U. Denk ◽  
R. Wimmer ◽  
C. Rust ◽  
P. Invernizzi ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Pär Söderhjelm ◽  
Mandar Kulkarni

Aromatic side-chains (phenylalanine and tyrosine) of a protein flip by 180° around the Cβ-Cγ axis (χ2 dihedral of side-chain) producing two symmetry-equivalent states. The ring-flip dynamics act as an NMR probe to understand local conformational fluctuations. Ring-flips are categorized as slow (ms onwards) or fast (ns to near ms) based on timescales accessible to NMR experiments. In this study, we investigated the ability of the infrequent metadynamics approach to discriminate between slow and fast ring-flips for eight individual aromatic side-chains (F4, Y10, Y21, F22, Y23, F33, Y35, F45) of basic pancreatic trypsin inhibitor (BPTI). Well-tempered metadynamics simulations were performed to observe ring-flipping free energy surfaces for all eight aromatic residues. The results indicate that χ2 as a standalone collective variable (CV) is not sufficient to classify fast and slow ring-flips. Most of the residues needed χ1 (N−Cχα) as a complementary CV, indicating the importance of librational motions in ring-flips. Multiple pathways and mechanisms were observed for residues F4, Y10, and F22. Recrossing events are observed for residues F22 and F33, indicating a possible role of friction effects in the ring-flipping. The results demonstrate the successful application of the metadynamics based approach to estimate ring-flip rates of aromatic residues in BPTI and identify certain limitations of the approach.


Sign in / Sign up

Export Citation Format

Share Document