scholarly journals Phosphatidylinositol-specific phospholipase C activity of chromaffin granule-binding proteins.

1985 ◽  
Vol 260 (12) ◽  
pp. 7171-7173 ◽  
Author(s):  
C E Creutz ◽  
L G Dowling ◽  
E M Kyger ◽  
R C Franson
2001 ◽  
Vol 204 (3) ◽  
pp. 487-493
Author(s):  
A. Kishigami ◽  
T. Ogasawara ◽  
Y. Watanabe ◽  
M. Hirata ◽  
T. Maeda ◽  
...  

The main phototransduction cascade in invertebrate visual cells involves the turnover of phosphatidylinositol, an important biochemical mechanism common to many signal-transduction systems. Light-activated rhodopsin stimulates guanine nucleotide exchange on the Gq class of G-protein, which activates phospholipase C to hydrolyze phosphatidylinositol 4,5-bisphosphate to inositol-1,4,5-trisphosphate and diacylglycerol. Subsequently, inositol-1,4,5-trisphosphate-binding proteins continue the signal cascade. Here, we report on the first inositol-1,4,5-trisphosphate-binding proteins demonstrated in an invertebrate visual system with our investigation of the photosensitive rhabdoms of squid. We screened the ability of proteins to interact with inositol-1,4,5-trisphosphate by affinity column chromatography with an inositol-1,4,5-trisphosphate analogue. We detected an inositol-1,4,5-trisphosphate-binding affinity in phospholipase C, receptor kinase and five other proteins in the cytosolic fraction and, surprisingly, rhodopsin in the membrane fraction. A binding assay with (3)H-labelled inositol-1,4,5-trisphosphate demonstrated the inositol-1,4,5-trisphosphate affinity of each of the purified proteins. Since rhodopsin, receptor kinase and phospholipase C are involved upstream of phosphatidylinositol turnover in the signal cascade, our result suggests that phosphatidylinositol turnover is important in feedback pathways in the signalling system.


1987 ◽  
Vol 493 (1 Cellular and) ◽  
pp. 489-492 ◽  
Author(s):  
CARL E. CREUTZ ◽  
WILLIAM H. MARTIN ◽  
WILLIAM J. ZAKS ◽  
DEBRA S. DRUST ◽  
HELEN C. HAMMAN

1989 ◽  
Vol 256 (1) ◽  
pp. F171-F178 ◽  
Author(s):  
D. Schlondorff ◽  
P. Singhal ◽  
A. Hassid ◽  
J. A. Satriano ◽  
S. DeCandido

We evaluated the role of GTP-binding proteins in the activation of phospholipase C, release of arachidonic acid, and synthesis of prostaglandin (PG) E2 in response to platelet-activating factor (PAF) and angiotensin II (ANG II) in cultured rat mesangial cells. Pretreatment with pertussis toxin (PT) decreased PGE2 formation and arachidonic acid release in response to PAF and ANG II but not that to A 23187. PT pretreatment also inhibited formation of inositol trisphosphate (IP3) in response to ANG II or PAF but did not significantly alter the rise in intracellular calcium detected by fura-2. PT catalyzed ADP ribosylation of two proteins of molecular mass approximately 40 and 41 kDa. Further evidence for involvement of GTP-binding protein in phospholipase C activation was that GTP-gamma S stimulated IP3 generation. Immunoblots with antibodies directed against different inhibitory alpha subunits of GTP-binding proteins showed that the major 40-kDa PT substrate reacted with an antibody directed against a decapeptide of the G protein subunit alpha i2 that is also found in leukocytes. This was further confirmed by Northern blot that showed the existence of mRNA in mesangial cells that hybridized with a cDNA probe for G alpha i2. In addition lesser amounts of mRNA hybridized with a restriction fragment cDNA probe for G alpha i3, which corresponds to the 41-kDa substrate for PT ribosylation. These results show that phospholipase C activation by PAF and ANG II in mesangial cells involves a specific G protein, most likely G alpha i2.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 146 (2) ◽  
pp. 861-869 ◽  
Author(s):  
Yoshiko Banno ◽  
Seiji Nagao ◽  
Toshiaki Katada ◽  
Koh-ichi Nagata ◽  
Michio Ui ◽  
...  

1991 ◽  
Vol 260 (3) ◽  
pp. F347-F352
Author(s):  
C. P. Thomas ◽  
M. Kester ◽  
M. J. Dunn

The mechanisms of stimulation of phospholipase C (PLC) by endothelin, specifically the role of guanine nucleotide-binding proteins (GTP-binding proteins) in coupling the endothelin receptor to PLC, were investigated in rat mesangial cells. Endothelin-1 (ET) synergistically released inositol polyphosphates in the presence of the stimulatory GTP analogue guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) in permeabilized cells. In addition, in intact cells, pertussis toxin partially inhibited the stimulation of total inositol phosphates (IPn) by ET. Pertussis toxin also reduced the peak ET-stimulated intracellular free calcium level ([Ca2+]i) in these cells, both in the presence and absence of extracellular calcium. Pertussis toxin induced ADP ribosylation of a 41- to 43-kDa protein in mesangial cell membranes, and this effect was inhibited by prior exposure to ET and augmented by the inhibitory GDP analogue, guanosine 5'-O-(2-thiodiphosphate) (GDP beta S). Thus a pertussis toxin-sensitive GTP-binding protein is involved in the activation of PLC by ET in glomerular mesangial cells.


Sign in / Sign up

Export Citation Format

Share Document