scholarly journals The major ribonucleoprotein-associated protein kinase of vesicular stomatitis virus is a host cell protein.

1983 ◽  
Vol 258 (24) ◽  
pp. 15283-15290
Author(s):  
S A Harmon ◽  
L L Marnell ◽  
D F Summers
2018 ◽  
Vol 92 (13) ◽  
pp. e00403-18 ◽  
Author(s):  
Mariana González-Hernández ◽  
Markus Hoffmann ◽  
Constantin Brinkmann ◽  
Julia Nehls ◽  
Michael Winkler ◽  
...  

ABSTRACTThe interferon-induced antiviral host cell protein tetherin can inhibit the release of several enveloped viruses from infected cells. The Ebola virus (EBOV) glycoprotein (GP) antagonizes tetherin, but the domains and amino acids in GP that are required for tetherin antagonism have not been fully defined. A GXXXA motif within the transmembrane domain (TMD) of EBOV-GP was previously shown to be important for GP-mediated cellular detachment. Here, we investigated whether this motif also contributes to tetherin antagonism. Mutation of the GXXXA motif did not impact GP expression or particle incorporation and only modestly reduced EBOV-GP-driven entry. In contrast, the GXXXA motif was required for tetherin antagonism in transfected cells. Moreover, alteration of the GXXXA motif increased tetherin sensitivity of a replication-competent vesicular stomatitis virus (VSV) chimera encoding EBOV-GP. Although these results await confirmation with authentic EBOV, they indicate that a GXXXA motif in the TMD of EBOV-GP is important for tetherin antagonism. Moreover, they provide the first evidence that GP can antagonize tetherin in the context of an infectious EBOV surrogate.IMPORTANCEThe glycoprotein (GP) of Ebola virus (EBOV) inhibits the antiviral host cell protein tetherin and may promote viral spread in tetherin-positive cells. However, tetherin antagonism by GP has so far been demonstrated only with virus-like particles, and it is unknown whether GP can block tetherin in infected cells. Moreover, a mutation in GP that selectively abrogates tetherin antagonism is unknown. Here, we show that a GXXXA motif in the transmembrane domain of EBOV-GP, which was previously reported to be required for GP-mediated cell rounding, is also important for tetherin counteraction. Moreover, analysis of this mutation in the context of vesicular stomatitis virus chimeras encoding EBOV-GP revealed that GP-mediated tetherin counteraction is operative in infected cells. To our knowledge, these findings demonstrate for the first time that GP can antagonize tetherin in infected cells and provide a tool to study the impact of GP-dependent tetherin counteraction on EBOV spread.


Parasitology ◽  
2006 ◽  
Vol 134 (4) ◽  
pp. 491-502 ◽  
Author(s):  
M. L. BELAUNZARÁN ◽  
M. J. WAINSZELBAUM ◽  
E. M. LAMMEL ◽  
G. GIMENEZ ◽  
M. M. ALOISE ◽  
...  

Here we have studied phospholipase A1 (Plase A1) from Trypanosoma cruzi infective stages and it's possible role regarding the interaction with mammalian host cells. Plase A1 was mainly detected as a membrane-bound activity in the infective amastigote and trypomastigote stages, being remarkably higher with respect to the non-infective epimastigotes. It is noteworthy that only the infective stages secreted Plase A1. Moreover, along the differentiation process from epimastigotes into metacyclic trypomastigotes, the secreted enzyme activity increased simultaneously with the appearance of metacyclic forms, as expected. Since this enzyme is predominantly membrane-associated and secreted by the infective stages, Vero cell lipid profile modifications were analysed after interaction with either intact infective parasites or purified T. cruzi Plase A1. Significant changes in Vero cell lipid composition were observed, with the appearance of free fatty acids, diacylglycerol and lysophosphatidylcholine. Concomitantly with the generation of second lipid messengers, host cell protein kinase C activation was demonstrated. These results indicate that T. cruzi Plase A1 could play a critical role in the early events of parasite-host cell interaction that precede invasion.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicholas M. Negretti ◽  
Christopher R. Gourley ◽  
Prabhat K. Talukdar ◽  
Geremy Clair ◽  
Courtney M. Klappenbach ◽  
...  

AbstractCampylobacter jejuni is a foodborne pathogen that binds to and invades the epithelial cells lining the human intestinal tract. Maximal invasion of host cells by C. jejuni requires cell binding as well as delivery of the Cia proteins (Campylobacter invasion antigens) to the host cell cytosol via the flagellum. Here, we show that CiaD binds to the host cell protein IQGAP1 (a Ras GTPase-activating-like protein), thus displacing RacGAP1 from the IQGAP1 complex. This, in turn, leads to the unconstrained activity of the small GTPase Rac1, which is known to have roles in actin reorganization and internalization of C. jejuni. Our results represent the identification of a host cell protein targeted by a flagellar secreted effector protein and demonstrate that C. jejuni-stimulated Rac signaling is dependent on IQGAP1.


Sign in / Sign up

Export Citation Format

Share Document