scholarly journals Initial processing of the insulin receptor precursor in vivo and in vitro.

1988 ◽  
Vol 263 (26) ◽  
pp. 12809-12812
Author(s):  
B J Goldstein ◽  
C R Kahn
1994 ◽  
Vol 14 (6) ◽  
pp. 3577-3587
Author(s):  
M G Myers ◽  
L M Wang ◽  
X J Sun ◽  
Y Zhang ◽  
L Yenush ◽  
...  

GRB-2 is a small SH2- and SH3 domain-containing adapter protein that associates with the mammalian SOS homolog to regulate p21ras during growth factor signaling. During insulin stimulation, GRB-2 binds to the phosphorylated Y895VNI motif of IRS-1. Substitution of Tyr-895 with phenylalanine (IRS-1F-895) prevented the IRS-1-GRB-2 association in vivo and in vitro. The myeloid progenitor cell line, 32-D, is insensitive to insulin because it contains few insulin receptors and no IRS-1. Coexpression of IRS-1 or IRS-1F-895 with the insulin receptor was required for insulin-stimulated mitogenesis in 32-D cells, while expression of the insulin receptor alone was sufficient to mediate insulin-stimulated tyrosine phosphorylation of Shc and activation of p21ras and mitogen-activated protein (MAP) kinase. The Shc-GRB-2 complex formed during insulin stimulation is a possible mediator of p21ras and MAP kinase activation in IRS-1-deficient 32-D cells. Interestingly, IRS-1, but not IRS-1F-895, enhanced the stimulation of MAP kinase by insulin in 32-D cells expressing insulin receptors. Thus, IRS-1 contributes to the stimulation of MAP kinase by insulin, probably through formation of the IRS-1-GRB-2 complex at Tyr-895. Our results suggest that the Shc-GRB-2 complex and the activation of p21ras-dependent signaling pathways, including MAP kinase, are insufficient for insulin-stimulated mitogenesis and that the essential function(s) of IRS-1 in proliferative signaling is largely unrelated to IRS-1-GRB-2 complex formation.


Endocrinology ◽  
2005 ◽  
Vol 146 (8) ◽  
pp. 3417-3427 ◽  
Author(s):  
Peter J. Klover ◽  
Alicia H. Clementi ◽  
Robert A. Mooney

Abstract Obesity and insulin resistance are considered chronic inflammatory states, in part because circulating IL-6 is elevated. Exogenous IL-6 can induce hepatic insulin resistance in vitro and in vivo. The importance of endogenous IL-6, however, to insulin resistance of obesity is unresolved. To test the hypothesis that IL-6 contributes to the inflammation and insulin resistance of obesity, IL-6 was depleted in Lepob mice by injection of IL-6-neutralizing antibody. In untreated Lepob mice, signal transducer and activator of transcription-3 (STAT3) activation was increased compared with that in lean controls, consistent with an inflammatory state. With IL-6 depletion, activation of STAT3 in liver and adipose tissue and expression of haptoglobin were reduced. Expression of the IL-6-dependent, hepatic acute phase protein fibrinogen was also decreased. Using the hyperinsulinemic-euglycemic clamp technique, insulin-dependent suppression of endogenous glucose production was 89% in IL-6-depleted Lepob mice, in contrast to only 32% in Lepob controls, indicating a marked increase in hepatic insulin sensitivity. A significant change in glucose uptake in skeletal muscle after IL-6 neutralization was not observed. In a direct comparison of hepatic insulin signaling in Lepob mice treated with anti-IL-6 vs. IgG-treated controls, insulin-dependent insulin receptor autophosphorylation and activation of Akt (pSer473) were increased by nearly 50% with IL-6 depletion. In adipose tissue, insulin receptor signaling showed no significant change despite major reductions in STAT3 phosphorylation and haptoglobin expression. In diet-induced obese mice, depletion of IL-6 improved insulin responsiveness in 2-h insulin tolerance tests. In conclusion, these results indicate that IL-6 plays an important and selective role in hepatic insulin resistance of obesity.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3145
Author(s):  
Veronica Vella ◽  
Marika Giuliano ◽  
Alessandro La Ferlita ◽  
Michele Pellegrino ◽  
Germano Gaudenzi ◽  
...  

The insulin receptor isoform A (IR-A) plays an increasingly recognized role in fetal growth and tumor biology in response to circulating insulin and/or locally produced IGF2. This role seems not to be shared by the IR isoform B (IR-B). We aimed to dissect the specific impact of IR isoforms in modulating insulin signaling in triple negative breast cancer (TNBC) cells. We generated murine 4T1 TNBC cells deleted from the endogenous insulin receptor (INSR) gene and expressing comparable levels of either human IR-A or IR-B. We then measured IR isoform-specific in vitro and in vivo biological effects and transcriptome in response to insulin. Overall, the IR-A was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor growth. Transcriptome analysis showed that approximately 89% of insulin-stimulated transcripts depended solely on the expression of the specific isoform. Notably, in cells overexpressing IR-A, insulin strongly induced genes involved in tumor progression and immune evasion including chemokines and genes related to innate immunity. Conversely, in IR-B overexpressing cells, insulin predominantly induced the expression of genes primarily involved in the regulation of metabolic pathways and, to a lesser extent, tumor growth and angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document