scholarly journals Cyclooxygenase gene expression is down-regulated by heparin-binding (acidic fibroblast) growth factor-1 in human endothelial cells.

1991 ◽  
Vol 266 (35) ◽  
pp. 24059-24063
Author(s):  
T. Hla ◽  
T. Maciag
1992 ◽  
Vol 103 (2) ◽  
pp. 453-461
Author(s):  
J.C. Swinscoe ◽  
E.C. Carlson

The cells of the retinal microvasculature consist predominantly of mesodermally derived pericytes and endothelial cells, and the regulatory factors which govern their co-ordinated growth and define their phenotypic characteristics in vivo may be regarded as key elements of the angiogenic process. An investigation of these cells in co-culture experiments has led to the identification of a potent mitogen for pericytes in medium conditioned by retinal endothelial cells (EC-FBS). EC-FBS activity was shown to be non-dialyzable, and stable to both heat and acid treatment. EC-FBS was inactivated by passage over a heparin-Agarose column. The column-bound activity could be eluted as a single peak at approximately 1.0 M NaCl. Stimulation of pericyte growth was also achieved with platelet-derived growth factor (PDGF), acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) and could be blocked by using the appropriate antiserum (anti-PDGF or anti-aFGF). Neither antisera, however, blocked the activity of EC-FBS. The EC-FBS mitogen markedly altered the phenotypic behavior of pericytes compared with PDGF and the FGFs; yet, unlike them, it failed to stimulate the growth of smooth muscle cells (SMC) and Balb/c 3T3 cells.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 240 ◽  
Author(s):  
Abha Sahni ◽  
Hema Narra ◽  
Jignesh Patel ◽  
Sanjeev Sahni

Microvascular endothelial cells (ECs) represent the primary target cells during human rickettsioses and respond to infection via the activation of immediate–early signaling cascades and the resultant induction of gene expression. As small noncoding RNAs dispersed throughout the genome, microRNAs (miRNAs) regulate gene expression post-transcriptionally to govern a wide range of biological processes. Based on our recent findings demonstrating the involvement of fibroblast growth factor receptor 1 (FGFR1) in facilitating rickettsial invasion into host cells and published reports suggesting miR-424 and miR-503 as regulators of FGF2/FGFR1, we measured the expression of miR-424 and miR-503 during R. conorii infection of human dermal microvascular endothelial cells (HMECs). Our results revealed a significant decrease in miR-424 and miR-503 expression in apparent correlation with increased expression of FGF2 and FGFR1. Considering the established phenomenon of endothelial heterogeneity and pulmonary and cerebral edema as the prominent pathogenic features of rickettsial infections, and significant pathogen burden in the lungs and brain in established mouse models of disease, we next quantified miR-424 and miR-503 expression in pulmonary and cerebral microvascular ECs. Again, R. conorii infection dramatically downregulated both miRNAs in these tissue-specific ECs as early as 30 min post-infection in correlation with higher FGF2/FGFR1 expression. Changes in the expression of both miRNAs and FGF2/FGFR1 were next confirmed in a mouse model of R. conorii infection. Furthermore, miR-424 overexpression via transfection of a mimic into host ECs reduced the expression of FGF2/FGFR1 and gave a corresponding decrease in R. conorii invasion, while an inhibitor of miR-424 had the expected opposite effect. Together, these findings implicate the rickettsial manipulation of host gene expression via regulatory miRNAs to ensure efficient cellular entry as the critical requirement to establish intracellular infection.


1998 ◽  
Vol 35 (5) ◽  
pp. 363-371 ◽  
Author(s):  
Johannes Wiecha ◽  
Benedikt Münz ◽  
Yongjian Wu ◽  
Thomas Noll ◽  
Harald Tillmanns ◽  
...  

1991 ◽  
Vol 11 (4) ◽  
pp. 2319-2323 ◽  
Author(s):  
J S Doctor ◽  
F M Hoffmann ◽  
B B Olwin

As assessed by competitive binding and protein-crosslinking experiments, Drosophila melanogaster cells possess basic fibroblast growth factor (bFGF)-specific binding proteins that are similar to FGF receptors on vertebrate cells in molecular weight and binding affinity; these D. melanogaster cells, however, have no detectable binding proteins for acidic fibroblast growth factor (aFGF). Consistent with the presence of bFGF-specific binding proteins, D. melanogaster cells degrade bFGF but not aFGF. These results indicate the conservation of heparin-binding growth factors and receptors between vertebrates and D. melanogaster.


Sign in / Sign up

Export Citation Format

Share Document