Capillary endothelial cells secrete a heparin-binding mitogen for pericytes
The cells of the retinal microvasculature consist predominantly of mesodermally derived pericytes and endothelial cells, and the regulatory factors which govern their co-ordinated growth and define their phenotypic characteristics in vivo may be regarded as key elements of the angiogenic process. An investigation of these cells in co-culture experiments has led to the identification of a potent mitogen for pericytes in medium conditioned by retinal endothelial cells (EC-FBS). EC-FBS activity was shown to be non-dialyzable, and stable to both heat and acid treatment. EC-FBS was inactivated by passage over a heparin-Agarose column. The column-bound activity could be eluted as a single peak at approximately 1.0 M NaCl. Stimulation of pericyte growth was also achieved with platelet-derived growth factor (PDGF), acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) and could be blocked by using the appropriate antiserum (anti-PDGF or anti-aFGF). Neither antisera, however, blocked the activity of EC-FBS. The EC-FBS mitogen markedly altered the phenotypic behavior of pericytes compared with PDGF and the FGFs; yet, unlike them, it failed to stimulate the growth of smooth muscle cells (SMC) and Balb/c 3T3 cells.