scholarly journals HYDROGEN ION CONCENTRATION AND ACID-BASE EQUILIBRIUM IN NORMAL PREGNANCY

1931 ◽  
Vol 91 (1) ◽  
pp. 63-68
Author(s):  
David M. Kydd
1919 ◽  
Vol 1 (4) ◽  
pp. 459-472 ◽  
Author(s):  
L. J. Henderson ◽  
Edwin J. Cohn ◽  
P. H. Cathcart ◽  
J. D. Wachman ◽  
W. O. Fenn

In this paper there are reported studies of the acid-base equilibrium in systems containing gluten suspended in solution of hydrochloric acid and sodium hydroxide. The studies have involved measurements of the hydrogen ion concentration, of the electrical conductivity, and of the solution of the proteins. Further, measurements have been made of the swelling and of the viscosity of the gluten component of such systems. The results seem to show that simple chemical phenomena are most important in such systems, and that the modifications of these, resulting from colloidal and heterogeneous characteristics, are of secondary importance in determining the condition of equilibrium, though somewhat more significant in the progress of the system toward the condition of equilibrium.


2020 ◽  
pp. 2182-2198
Author(s):  
Julian Seifter

The normal pH of human extracellular fluid is maintained within the range of 7.35 to 7.45. The four main types of acid–base disorders can be defined by the relationship between the three variables, pH, Pco2, and HCO3 –. Respiratory disturbances begin with an increase or decrease in pulmonary carbon dioxide clearance which—through a shift in the equilibrium between CO2, H2O, and HCO3 –—favours a decreased hydrogen ion concentration (respiratory alkalosis) or an increased hydrogen ion concentration (respiratory acidosis) respectively. Metabolic acidosis may result when hydrogen ions are added with a nonbicarbonate anion, A−, in the form of HA, in which case bicarbonate is consumed, or when bicarbonate is removed as the sodium or potassium salt, increasing hydrogen ion concentration. Metabolic alkalosis is caused by removal of hydrogen ions or addition of bicarbonate. Laboratory tests usually performed in pursuit of diagnosis, aside from arterial blood gas analysis, include a basic metabolic profile with electrolytes (sodium, potassium, chloride, bicarbonate), blood urea nitrogen, and creatinine. Calculation of the serum anion gap, which is determined by subtracting the sum of chloride and bicarbonate from the serum sodium concentration, is useful. The normal value is 10 to 12 mEq/litre. An elevated value is diagnostic of metabolic acidosis, helpful in the differential diagnosis of the specific metabolic acidosis, and useful in determining the presence of a mixed metabolic disturbance. Acid–base disorders can be associated with (1) transport processes across epithelial cells lining transcellular spaces in the kidney, gastrointestinal tract, and skin; (2) transport of acid anions from intracellular to extracellular spaces—anion gap acidosis; and (3) intake.


1925 ◽  
Vol 9 (1) ◽  
pp. 97-109 ◽  
Author(s):  
David I. Hitchcock

In applying Donnan's theory of membrane equilibria to systems where the non-diffusible ion is furnished by a weak acid, base, or ampholyte, certain new relations have been derived. Equations have been deduced which give the ion ratio and the apparent osmotic pressure as functions of the concentration and ionization constant of the weak electrolyte, and of the hydrogen ion concentration in its solution. The conditions for maximum values of these two properties have been formulated. It is pointed out that the progressive addition of acid to a system containing a non-diffusible weak base should not cause the value of the membrane potential to rise, pass through a maximum, and fall, but should only cause it to diminish. It is shown that the theory predicts slight differences in the effect of salts on the ion ratio in such systems, the effect increasing with the valence of the cation.


1963 ◽  
Vol 204 (5) ◽  
pp. 765-770 ◽  
Author(s):  
E. B. Brown ◽  
Bernard Goott

Intracellular hydrogen ion concentration was determined on skeletal muscle by the DMO technique in dogs subjected to various acid-base alterations. The data verified the fact that a given alteration in Pco2 produces a larger hydrogen ion change in intracellular fluid than in extracellular fluid. In spite of this, however, the ratio (See PDF) decreased. On the basis of this change in ratio, the Donnan equilibrium would predict that potassium would move from intracellular to extracellular compartment and not in the reverse direction as had been assumed previously. Using the change in plasma potassium as the criterion of direction of movement of potassium between intracellular and extracellular fluids, the movement of potassium produced by any of the acid-base alterations which were studied was usually that which would be predicted by the Donnan equilibrium.


1986 ◽  
Vol 110 (2) ◽  
pp. 293-301 ◽  
Author(s):  
K. J. Radke ◽  
R. E. Taylor ◽  
E. G. Schneider

ABSTRACT The direct effects of changes in extracellular hydrogen ion (H+) concentration on aldosterone secretion under basal, angiotensin II- and potassium-stimulated conditions were studied in isolated, perfused canine adrenal glands. Changes in extracellular H+ concentration were induced by altering either the partial pressure of CO2 (pCO2) or the HCO3− concentration of the perfusate. Acid-base disturbances had a more pronounced effect on aldosterone secretion under stimulated than under basal conditions. Increasing H+ concentration enhanced angiotensin II- and potassium-stimulated aldosterone secretion, whereas decreasing H+ concentration markedly inhibited the secretory response to these stimuli. Because changes in H+ concentration, whether produced by varying extracellular pCO2 or extracellular HCO3− concentration, had similar effects on angiotensin II-stimulated aldosterone secretion, the data suggest that H+ concentration per se is the important determinant of the aldosterone secretory rate. Interestingly, during the immediate recovery period from pCO2-induced alkalosis under both angiotensin II- and potassium-stimulated conditions, aldosterone secretion always returned to a value significantly higher than that obtained just before alkalosis. The results of this study demonstrate that changes in extracellular H+ concentration influence the rate of aldosterone secretion, possibly via changes in intracellular pH, by a direct action on the canine adrenal gland. Therefore, when evaluating the control of aldosterone secretion, the acid-base status of the whole animal or of in-vitro adrenal tissue must be considered. J. Endocr. (1986) 110, 293–301


Sign in / Sign up

Export Citation Format

Share Document