Intracellular hydrogen ion changes and potassium movement

1963 ◽  
Vol 204 (5) ◽  
pp. 765-770 ◽  
Author(s):  
E. B. Brown ◽  
Bernard Goott

Intracellular hydrogen ion concentration was determined on skeletal muscle by the DMO technique in dogs subjected to various acid-base alterations. The data verified the fact that a given alteration in Pco2 produces a larger hydrogen ion change in intracellular fluid than in extracellular fluid. In spite of this, however, the ratio (See PDF) decreased. On the basis of this change in ratio, the Donnan equilibrium would predict that potassium would move from intracellular to extracellular compartment and not in the reverse direction as had been assumed previously. Using the change in plasma potassium as the criterion of direction of movement of potassium between intracellular and extracellular fluids, the movement of potassium produced by any of the acid-base alterations which were studied was usually that which would be predicted by the Donnan equilibrium.

2020 ◽  
pp. 2182-2198
Author(s):  
Julian Seifter

The normal pH of human extracellular fluid is maintained within the range of 7.35 to 7.45. The four main types of acid–base disorders can be defined by the relationship between the three variables, pH, Pco2, and HCO3 –. Respiratory disturbances begin with an increase or decrease in pulmonary carbon dioxide clearance which—through a shift in the equilibrium between CO2, H2O, and HCO3 –—favours a decreased hydrogen ion concentration (respiratory alkalosis) or an increased hydrogen ion concentration (respiratory acidosis) respectively. Metabolic acidosis may result when hydrogen ions are added with a nonbicarbonate anion, A−, in the form of HA, in which case bicarbonate is consumed, or when bicarbonate is removed as the sodium or potassium salt, increasing hydrogen ion concentration. Metabolic alkalosis is caused by removal of hydrogen ions or addition of bicarbonate. Laboratory tests usually performed in pursuit of diagnosis, aside from arterial blood gas analysis, include a basic metabolic profile with electrolytes (sodium, potassium, chloride, bicarbonate), blood urea nitrogen, and creatinine. Calculation of the serum anion gap, which is determined by subtracting the sum of chloride and bicarbonate from the serum sodium concentration, is useful. The normal value is 10 to 12 mEq/litre. An elevated value is diagnostic of metabolic acidosis, helpful in the differential diagnosis of the specific metabolic acidosis, and useful in determining the presence of a mixed metabolic disturbance. Acid–base disorders can be associated with (1) transport processes across epithelial cells lining transcellular spaces in the kidney, gastrointestinal tract, and skin; (2) transport of acid anions from intracellular to extracellular spaces—anion gap acidosis; and (3) intake.


1925 ◽  
Vol 9 (1) ◽  
pp. 97-109 ◽  
Author(s):  
David I. Hitchcock

In applying Donnan's theory of membrane equilibria to systems where the non-diffusible ion is furnished by a weak acid, base, or ampholyte, certain new relations have been derived. Equations have been deduced which give the ion ratio and the apparent osmotic pressure as functions of the concentration and ionization constant of the weak electrolyte, and of the hydrogen ion concentration in its solution. The conditions for maximum values of these two properties have been formulated. It is pointed out that the progressive addition of acid to a system containing a non-diffusible weak base should not cause the value of the membrane potential to rise, pass through a maximum, and fall, but should only cause it to diminish. It is shown that the theory predicts slight differences in the effect of salts on the ion ratio in such systems, the effect increasing with the valence of the cation.


1922 ◽  
Vol 4 (4) ◽  
pp. 463-486 ◽  
Author(s):  
Jacques Loeb

1. It has been shown in previous publications that when solutions of different concentrations of salts are separated by collodion-gelatin membranes from water, electrical forces participate in addition to osmotic forces in the transport of water from the side of the water to that of the solution. When the hydrogen ion concentration of the salt solution and of the water on the other side of the membrane is the same and if both are on the acid side of the isoelectric point of gelatin (e.g. pH 3.0), the electrical transport of water increases with the valency of the cation and inversely with the valency of the anion of the salt in solution. Moreover, the electrical transport of water increases at first with increasing concentration of the solution until a maximum is reached at a concentration of about M/32, when upon further increase of the concentration of the salt solution the transport diminishes until a concentration of about M/4 is reached, when a second rise begins, which is exclusively or preeminently the expression of osmotic forces and therefore needs no further discussion. 2. It is shown that the increase in the height of the transport curves with increase in the valency of the cation and inversely with the increase in the valency of the anion is due to the influence of the salt on the P.D. (E) across the membrane, the positive charge of the solution increasing in the same way with the valency of the ions mentioned. This effect on the P.D. increases with increasing concentration of the solution and is partly, if not essentially, the result of diffusion potentials. 3. The drop in the transport curves is, however, due to the influence of the salts on the P.D. (ϵ) between the liquid inside the pores of the gelatin membrane and the gelatin walls of the pores. According to the Donnan equilibrium the liquid inside the pores must be negatively charged at pH 3.0 and this charge is diminished the higher the concentration of the salt. Since the electrical transport is in proportion to the product of E x ϵ and since the augmenting action of the salt on E begins at lower concentrations than the depressing action on ϵ, it follows that the electrical transport of water must at first rise with increasing concentration of the salt and then drop. 4. If the Donnan equilibrium is the sole cause for the P.D. (ϵ) between solid gelatin and watery solution the transport of water through collodion-gelatin membranes from water to salt solution should be determined purely by osmotic forces when water, gelatin, and salt solution have the hydrogen ion concentration of the isoelectric point of gelatin (pH = 4.7). It is shown that this is practically the case when solutions of LiCl, NaCl, KCl, MgCl2, CaCl2, BaCl2, Na2SO4, MgSO4 are separated by collodion-gelatin membranes from water; that, however, when the salt has a trivalent (or tetravalent?) cation or a tetravalent anion a P.D. between solid isoelectric gelatin and water is produced in which the wall assumes the sign of charge of the polyvalent ion. 5. It is suggested that the salts with trivalent cation, e.g. Ce(NO3)3, form loose compounds with isoelectric gelatin which dissociate electrolytically into positively charged complex gelatin-Ce ions and negatively charged NO3 ions, and that the salts of Na4Fe(CN)6 form loose compounds with isoelectric gelatin which dissociate electrolytically into negatively charged complex gelatin-Fe(CN)6 ions and positively charged Na ions. The Donnan equilibrium resulting from this ionization would in that case be the cause of the charge of the membrane.


1922 ◽  
Vol 4 (6) ◽  
pp. 769-776 ◽  
Author(s):  
Jacques Loeb

1. It is shown that when part of the gelatin in a solution of gelatin chloride is replaced by particles of powdered gelatin (without change of pH) the membrane potential of the solution is influenced comparatively little. 2. A measurement of the hydrogen ion concentration of the gelatin chloride solution and the outside aqueous solution with which the gelatin solution is in osmotic equilibrium, shows that the membrane potential can be calculated from this difference of hydrogen ion concentration with an accuracy of half a millivolt. This proves that the membrane potential is due to the establishment of a membrane equilibrium and that the powdered particles participate in this membrane equilibrium. 3. It is shown that a Donnan equilibrium is established between powdered particles of gelatin chloride and not too strong a solution of gelatin chloride. This is due to the fact that the powdered gelatin particles may be considered as a solid solution of gelatin with a higher concentration than that of the weak gelatin solution in which they are suspended. It follows from the theory of membrane equilibria that this difference in concentration of protein ions must give rise to potential differences between the solid particles and the weaker gelatin solution. 4. The writer had shown previously that when the gelatin in a solution of gelatin chloride is replaced by powdered gelatin (without a change in pH), the osmotic pressure of the solution is lowered the more the more dissolved gelatin is replaced by powdered gelatin. It is therefore obvious that the powdered particles of gelatin do not participate in the osmotic pressure of the solution in spite of the fact that they participate in the establishment of the Donnan equilibrium and in the membrane potentials. 5. This paradoxical phenomenon finds its explanation in the fact that as a consequence of the participation of each particle in the Donnan equilibrium, a special osmotic pressure is set up in each individual particle of powdered gelatin which leads to a swelling of that particle, and this osmotic pressure is measured by the increase in the cohesion pressure of the powdered particles required to balance the osmotic pressure inside each particle. 6. In a mixture of protein in solution and powdered protein (or protein micellæ) we have therefore two kinds of osmotic pressure, the hydrostatic pressure of the protein which is in true solution, and the cohesion pressure of the aggregates. Since only the former is noticeable in the hydrostatic pressure which serves as a measure of the osmotic pressure of a solution, it is clear why the osmotic pressure of a protein solution must be diminished when part of the protein in true solution is replaced by aggregates.


1919 ◽  
Vol 1 (4) ◽  
pp. 459-472 ◽  
Author(s):  
L. J. Henderson ◽  
Edwin J. Cohn ◽  
P. H. Cathcart ◽  
J. D. Wachman ◽  
W. O. Fenn

In this paper there are reported studies of the acid-base equilibrium in systems containing gluten suspended in solution of hydrochloric acid and sodium hydroxide. The studies have involved measurements of the hydrogen ion concentration, of the electrical conductivity, and of the solution of the proteins. Further, measurements have been made of the swelling and of the viscosity of the gluten component of such systems. The results seem to show that simple chemical phenomena are most important in such systems, and that the modifications of these, resulting from colloidal and heterogeneous characteristics, are of secondary importance in determining the condition of equilibrium, though somewhat more significant in the progress of the system toward the condition of equilibrium.


Sign in / Sign up

Export Citation Format

Share Document