scholarly journals The Condensation Reaction of Fatty Acid Biosynthesis

1963 ◽  
Vol 238 (4) ◽  
pp. 1255-1261 ◽  
Author(s):  
Peter Goldman ◽  
A.W. Alberts ◽  
P. Roy Vagelos
1997 ◽  
Vol 321 (2) ◽  
pp. 313-318 ◽  
Author(s):  
Elke WINTER ◽  
Monika BRUMMEL ◽  
Ricardo SCHUCH ◽  
Friedrich SPENER

In order to identify regulatory steps in fatty acid biosynthesis, the influence of intermediate 3-oxoacyl-(acyl carrier proteins) (3-oxoacyl-ACPs) and end-product acyl-ACPs of the fatty acid synthase reaction on the condensation reaction was investigated in vitro, using total fatty acid synthase preparations and purified 3-oxoacyl-ACP synthases (KASs; EC 2.3.1.41) from Cuphea lanceolata seeds. KAS I and II in the fatty acid synthase preparations were assayed for the elongation of octanoyl- and hexadecanoyl-ACP respectively, and the accumulation of the corresponding condensation product 3-oxoacyl-ACP was studied by modulating the content of the reducing equivalents NADH and NADPH. Complete omission of reducing equivalents resulted with either KAS in the abnormal synthesis of acetyl-ACP from malonyl-ACP by a decarboxylation reaction. Supplementation with NADPH or NADH, separately or in combination with recombinant 3-oxoacyl-ACP reductase (EC 1.1.1.100), led to a decrease in the amount of acetyl-ACP and a simultaneous increase in elongation products. This demonstrates that the accumulation of 3-oxoacyl-ACP inhibits the condensation reaction on the one hand, and induces the decarboxylation of malonyl-ACP on the other. By carrying out similar experiments with purified enzymes, this decarboxylation was attributed to the action of KAS. Our data point to a regulatory mechanism for the degradation of malonyl-ACP in plants which is activated by the accumulation of the fatty acid synthase intermediate 3-oxoacyl-ACP.


1991 ◽  
Vol 81 (2) ◽  
pp. 251-255
Author(s):  
Manfred Focke ◽  
Andrea Feld ◽  
Hartmut K. Lichtenthaler

Author(s):  
L. K. Dahiwade ◽  
S. R. Rochlani ◽  
P. B. Choudhari ◽  
R. P. Dhavale ◽  
H. N. Moreira

Background: Mycobacterium tuberculosis is a causative organism of tuberculosis, which is most deadly disease after cancer in a current decade. The development of multidrug and broadly drug- resistant strains making the tuberculosis problem more and more critical. In last 40 years, only one molecule is added to the treatment regimen. Generally, drug design and development programs are targeted proteins whose function is known to be essential to the bacterial cell. Objectives: Reported here are the development of 'S', 'N’ heterocycles as antimycobacterials targeting fatty acid biosynthesis. Material and Methods: In the present communication, rational development of anti-mycobacterial agent's targeting fatty acid biosynthesis has been done by integrating the pocket modelling and virtual analysis. Results: The identified potential 33 lead compounds were synthesized, characterized by physicochemical and spectroscopic methods like IR, NMR spectroscopy and further screened for antimycobacterial activity using isoniazid as standard. All the designed compounds have shown profound antimycobacterial activity. Conclusion: In this present communication, we found that 3c, 3f, 3l and 4k molecules had expressive desirable biological activity and specific interactions with fatty acids. Further optimization of these leads is necessary for the development of potential antimycobacterial drug candidate having less side effects.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 706
Author(s):  
Antonio J. Moreno-Pérez ◽  
Raquel Martins-Noguerol ◽  
Cristina DeAndrés-Gil ◽  
Mónica Venegas-Calerón ◽  
Rosario Sánchez ◽  
...  

Histone modifications are of paramount importance during plant development. Investigating chromatin remodeling in developing oilseeds sheds light on the molecular mechanisms controlling fatty acid metabolism and facilitates the identification of new functional regions in oil crop genomes. The present study characterizes the epigenetic modifications H3K4me3 in relationship with the expression of fatty acid-related genes and transcription factors in developing sunflower seeds. Two master transcriptional regulators identified in this analysis, VIV1 (homologous to Arabidopsis ABI3) and FUS3, cooperate in the regulation of WRINKLED 1, a transcriptional factor regulating glycolysis, and fatty acid synthesis in developing oilseeds.


2021 ◽  
Vol 22 (11) ◽  
pp. 5951
Author(s):  
Xiaofei Zhou ◽  
Xiaoyu Ling ◽  
Huijuan Guo ◽  
Keyan Zhu-Salzman ◽  
Feng Ge ◽  
...  

Bacterial symbionts associated with insects are often involved in host development and ecological adaptation. Serratia symbiotica, a common facultative endosymbiont harbored in pea aphids, improves host fitness and heat tolerance, but studies concerning the nutritional metabolism and impact on the aphid host associated with carrying Serratia are limited. In the current study, we showed that Serratia-infected aphids had a shorter nymphal developmental time and higher body weight than Serratia-free aphids when fed on detached leaves. Genes connecting to fatty acid biosynthesis and elongation were up-regulated in Serratia-infected aphids. Specifically, elevated expression of fatty acid synthase 1 (FASN1) and diacylglycerol-o-acyltransferase 2 (DGAT2) could result in accumulation of myristic acid, palmitic acid, linoleic acid, and arachidic acid in fat bodies. Impairing fatty acid synthesis in Serratia-infected pea aphids either by a pharmacological inhibitor or through silencing FASN1 and DGAT2 expression prolonged the nymphal growth period and decreased the aphid body weight. Conversely, supplementation of myristic acid (C14:0) to these aphids restored their normal development and weight gain. Our results indicated that Serratia promoted development and growth of its aphid host through enhancing fatty acid biosynthesis. Our discovery has shed more light on nutritional effects underlying the symbiosis between aphids and facultative endosymbionts.


1973 ◽  
Vol 248 (4) ◽  
pp. 1268-1276 ◽  
Author(s):  
Richard A. Jacobs ◽  
William S. Sly ◽  
Philip W. Majerus

Sign in / Sign up

Export Citation Format

Share Document