serratia symbiotica
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Atsushi Nakabachi ◽  
Hiromitsu Inoue ◽  
Yuu Hirose

Abstract Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to “endosymbionts3”, which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and “endosymbionts2”, which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future.


Author(s):  
François Renoz ◽  
Vincent Foray ◽  
Jérôme Ambroise ◽  
Patrice Baa-Puyoulet ◽  
Bertrand Bearzatto ◽  
...  

Mutualistic associations between insects and heritable bacterial symbionts are ubiquitous in nature. The aphid symbiont Serratia symbiotica is a valuable candidate for studying the evolution of bacterial symbiosis in insects because it includes a wide diversity of strains that reflect the diverse relationships in which bacteria can be engaged with insects, from pathogenic interactions to obligate intracellular mutualism. The recent discovery of culturable strains, which are hypothesized to resemble the ancestors of intracellular strains, provide an opportunity to study the mechanisms underlying bacterial symbiosis in its early stages. In this study, we analyzed the genomes of three of these culturable strains that are pathogenic to aphid hosts, and performed comparative genomic analyses including mutualistic host-dependent strains. All three genomes are larger than those of the host-restricted S. symbiotica strains described so far, and show significant enrichment in pseudogenes and mobile elements, suggesting that these three pathogenic strains are in the early stages of the adaptation to their host. Compared to their intracellular mutualistic relatives, the three strains harbor a greater diversity of genes coding for virulence factors and metabolic pathways, suggesting that they are likely adapted to infect new hosts and are a potential source of metabolic innovation for insects. The presence in their genomes of secondary metabolism gene clusters associated with the production of antimicrobial compounds and phytotoxins supports the hypothesis that S. symbiotia symbionts evolved from plant-associated strains and that plants may serve as intermediate hosts. Mutualistic associations between insects and bacteria are the result of independent transitions to endosymbiosis initiated by the acquisition of environmental progenitors. In this context, the genomes of free-living S. symbiotica strains provide a rare opportunity to study the inventory of genes held by bacterial associates of insects that are at the gateway to a host-dependent lifestyle.


2021 ◽  
Vol 22 (11) ◽  
pp. 5951
Author(s):  
Xiaofei Zhou ◽  
Xiaoyu Ling ◽  
Huijuan Guo ◽  
Keyan Zhu-Salzman ◽  
Feng Ge ◽  
...  

Bacterial symbionts associated with insects are often involved in host development and ecological adaptation. Serratia symbiotica, a common facultative endosymbiont harbored in pea aphids, improves host fitness and heat tolerance, but studies concerning the nutritional metabolism and impact on the aphid host associated with carrying Serratia are limited. In the current study, we showed that Serratia-infected aphids had a shorter nymphal developmental time and higher body weight than Serratia-free aphids when fed on detached leaves. Genes connecting to fatty acid biosynthesis and elongation were up-regulated in Serratia-infected aphids. Specifically, elevated expression of fatty acid synthase 1 (FASN1) and diacylglycerol-o-acyltransferase 2 (DGAT2) could result in accumulation of myristic acid, palmitic acid, linoleic acid, and arachidic acid in fat bodies. Impairing fatty acid synthesis in Serratia-infected pea aphids either by a pharmacological inhibitor or through silencing FASN1 and DGAT2 expression prolonged the nymphal growth period and decreased the aphid body weight. Conversely, supplementation of myristic acid (C14:0) to these aphids restored their normal development and weight gain. Our results indicated that Serratia promoted development and growth of its aphid host through enhancing fatty acid biosynthesis. Our discovery has shed more light on nutritional effects underlying the symbiosis between aphids and facultative endosymbionts.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Julie Perreau ◽  
Devki J. Patel ◽  
Hanna Anderson ◽  
Gerald P. Maeda ◽  
Katherine M. Elston ◽  
...  

ABSTRACT Many insects possess beneficial bacterial symbionts that occupy specialized host cells and are maternally transmitted. As a consequence of their host-restricted lifestyle, these symbionts often possess reduced genomes and cannot be cultured outside hosts, limiting their study. The bacterial species Serratia symbiotica was originally characterized as noncultured strains that live as mutualistic symbionts of aphids and are vertically transmitted through transovarial endocytosis within the mother’s body. More recently, culturable strains of S. symbiotica were discovered that retain a larger set of ancestral Serratia genes, are gut pathogens in aphid hosts, and are principally transmitted via a fecal-oral route. We find that these culturable strains, when injected into pea aphids, replicate in the hemolymph and are pathogenic. Unexpectedly, they are also capable of maternal transmission via transovarial endocytosis: using green fluorescent protein (GFP)-tagged strains, we observe that pathogenic S. symbiotica strains, but not Escherichia coli, are endocytosed into early embryos. Furthermore, pathogenic S. symbiotica strains are compartmentalized into specialized aphid cells in a fashion similar to that of mutualistic S. symbiotica strains during later stages of embryonic development. However, infected embryos do not appear to develop properly, and offspring infected by a transovarial route are not observed. Thus, cultured pathogenic strains of S. symbiotica have the latent capacity to transition to lifestyles as mutualistic symbionts of aphid hosts, but persistent vertical transmission is blocked by their pathogenicity. To transition into stably inherited symbionts, culturable S. symbiotica strains may need to adapt to regulate their titer, limit their pathogenicity, and/or provide benefits to aphids that outweigh their cost. IMPORTANCE Insects have evolved various mechanisms to reliably transmit their beneficial bacterial symbionts to the next generation. Sap-sucking insects, including aphids, transmit symbionts by endocytosis of the symbiont into cells of the early embryo within the mother’s body. Experimental studies of this process are hampered by the inability to culture or genetically manipulate host-restricted, symbiotic bacteria. Serratia symbiotica is a bacterial species that includes strains ranging from obligate, heritable symbionts to gut pathogens. We demonstrate that culturable S. symbiotica strains, which are aphid gut pathogens, can be maternally transmitted. Cultured S. symbiotica therefore possesses a latent capacity for evolving a host-restricted lifestyle and can be used to understand the transition from pathogenicity to beneficial symbiosis.


2021 ◽  
Author(s):  
Inès Pons ◽  
Nora Scieur ◽  
Linda Dhondt ◽  
Marie-Eve Renard ◽  
François Renoz ◽  
...  

ABSTRACTBacterial symbioses are significant drivers of insect evolutionary ecology. However, despite recent findings that these associations can emerge from environmentally derived bacterial precursors, there is still little information on how these potential progenitors of insect symbionts circulates in the trophic systems. The aphid symbiont Serratia symbiotica represents a valuable model for deciphering evolutionary scenarios of bacterial acquisition by insects, as its diversity includes intracellular host-dependent strains as well as gut-associated strains that have retained some ability to live independently of their hosts and circulate in plant phloem sap. These strains represent a potential reservoir for the emergence of new and more intimate symbioses. Here, we conducted a field study to examine the distribution and diversity of S. symbiotica found in aphid populations, as well as in different compartments of their surrounding environment. A total of 250 aphid colonies, 203 associated insects, and 161 plant samples associated with aphid colonies were screened for S. symbiotica. Twenty percent of aphids were infected with S. symbiotica, and the symbiont includes a wide diversity of strains with varied tissue tropism corresponding to different lifestyle. We also showed that the prevalence of S. symbiotica is influenced by seasonal temperatures. For the first time, we found that S. symbiotica was present in non aphid species and in host plants, and that the prevalence of the bacterium in these samples was higher when associated aphid colonies were infected. Furthermore, phylogenetic analyses suggest the existence of horizontal transfers between the different trophic levels examined. These results provide a completely new picture of the ubiquity of an insect symbiont in nature. They suggest that ecological interactions promote the dissemination of strains that are still free-living and poorly specialized, and for which plants are a proabable reservoir for the acquisition of new bacterial partners in insects.


Author(s):  
Katherine M. Elston ◽  
Julie Perreau ◽  
Gerald P. Maeda ◽  
Nancy A. Moran ◽  
Jeffrey E. Barrick

Aphids are global agricultural pests and important models for bacterial symbiosis. To date, none of the native symbionts of aphids have been genetically manipulated, which limits our understanding of how they interact with their hosts. Serratia symbiotica CWBI-2.3T is a culturable, gut-associated bacterium isolated from the black bean aphid. Closely related Serratia symbiotica strains are facultative aphid endosymbionts that are vertically transmitted from mother to offspring during embryogenesis. We demonstrate that CWBI-2.3T can be genetically engineered using a variety of techniques, plasmids, and gene expression parts. Then, we use fluorescent protein expression to track the dynamics with which CWBI-2.3T colonizes the guts of multiple aphid species, and we measure how this bacterium affects aphid fitness. Finally, we show that we can induce heterologous gene expression from engineered CWBI-2.3T in living aphids. These results inform the development of CWBI-2.3T for aphid paratransgenesis, which could be used to study aphid biology and enable future agricultural technologies. IMPORTANCE Insects have remarkably diverse and integral roles in global ecosystems. Many harbor symbiotic bacteria, but very few of these bacteria have been genetically engineered. Aphids are major agricultural pests and an important model system for the study of symbiosis. This work describes methods for engineering a culturable aphid symbiont, Serratia symbiotica CWBI-2.3T. These approaches and genetic tools could be used in the future to implement new paradigms for the biological study and control of aphids.


2020 ◽  
Author(s):  
Katherine M. Elston ◽  
Julie Perreau ◽  
Gerald P. Maeda ◽  
Nancy A. Moran ◽  
Jeffrey E. Barrick

ABSTRACTAphids are global agricultural pests and important models for bacterial symbiosis. To date, none of the native symbionts of aphids have been genetically manipulated, which limits our understanding of how they interact with their hosts. Serratia symbiotica CWBI-2.3T is a culturable, gut-associated bacterium isolated from the black bean aphid. Closely related Serratia symbiotica strains are facultative aphid endosymbionts that are vertically transmitted from mother to offspring during embryogenesis. We demonstrate that CWBI-2.3T can be genetically engineered using a variety of techniques, plasmids, and gene expression parts. Then, we use fluorescent protein expression to track the dynamics with which CWBI-2.3T colonizes the guts of multiple aphid species, and we measure how this bacterium affects aphid fitness. Finally, we show that we can induce heterologous gene expression from engineered CWBI-2.3T in living aphids. These results inform the development of CWBI-2.3T for aphid paratransgenesis, which could be used to study aphid biology and enable future agricultural technologies.IMPORTANCEInsects have remarkably diverse and integral roles in global ecosystems. Many harbor symbiotic bacteria, but very few of these bacteria have been genetically engineered. Aphids are major agricultural pests and an important model system for the study of symbiosis. This work describes methods for engineering a culturable aphid symbiont, Serratia symbiotica CWBI-2.3T. These approaches and genetic tools could be used in the future to implement new paradigms for the biological study and control of aphids.


2020 ◽  
Author(s):  
Julie Perreau ◽  
Devki J. Patel ◽  
Hanna Anderson ◽  
Gerald P. Maeda ◽  
Katherine M. Elston ◽  
...  

AbstractMany insects possess beneficial bacterial symbionts that occupy specialized host cells and are maternally transmitted. As a consequence of their host-restricted lifestyle, these symbionts often possess reduced genomes and cannot be cultured outside hosts, limiting their study. The bacterial species Serratia symbiotica was originally described by noncultured strains that live as mutualistic symbionts of aphids and are vertically transmitted through transovarial endocytosis within the mother’s body. More recently, culturable strains of S. symbiotica were discovered that retain a larger set of ancestral Serratia genes, are gut pathogens in aphid hosts, and are principally transmitted via a fecal-oral route. We find that these culturable strains, when injected into pea aphids, replicate in the hemolymph and are pathogenic. Unexpectedly, they are also capable of maternal transmission via transovarial endocytosis: using GFP-tagged strains, we observe that pathogenic S. symbiotica, but not Escherichia coli, are endocytosed into early embryos. Furthermore, pathogenic S. symbiotica strains are compartmentalized into specialized aphid cells in a similar fashion to mutualistic S. symbiotica strains during later stages of embryonic development. Thus, cultured, pathogenic strains of S. symbiotica have the latent capacity to transition to lifestyles as mutualistic symbionts of aphid hosts. This capacity is blocked by pathogenicity: their hosts die before infected progeny are born. To transition into stably inherited symbionts, culturable S. symbiotica strains may need to adapt to regulate their titer, limit their pathogenicity, and/or provide benefits to aphids that outweigh their cost.ImportanceInsects have evolved various mechanisms to reliably transmit their beneficial bacterial symbionts to the next generation. Sap-sucking insects, including aphids, transmit symbionts by endocytosis of the symbiont into cells of the early embryo within the mother’s body. Experimental studies of this process are hampered by the inability to culture or genetically manipulate host-restricted, symbiotic bacteria. Serratia symbiotica is a bacterial species that includes strains ranging from obligate, heritable symbionts to culturable gut pathogens. We demonstrate that culturable S. symbiotica strains, that are aphid gut pathogens, can be maternally transmitted by endocytosis. Cultured S. symbiotica therefore possess a latent capacity for evolving a host-restricted lifestyle and can be used to understand the transition from pathogenicity to beneficial symbiosis.


2020 ◽  
Vol 9 (10) ◽  
Author(s):  
François Renoz ◽  
Jérôme Ambroise ◽  
Bertrand Bearzatto ◽  
Patrice Baa-Puyoulet ◽  
Federica Calevro ◽  
...  

Serratia symbiotica, one of the most frequent symbiont species in aphids, includes strains that exhibit various lifestyles ranging from free-living to obligate intracellular mutualism. Here, we report the draft genome sequences of two strains, namely, 24.1 and Apa8A1, isolated from aphids of the genus Aphis, consisting of genome sizes of 3,089,091 bp and 3,232,107 bp, respectively. These genome sequences may provide new insights into how mutualistic interactions between bacteria and insects evolve and are shaped.


Sign in / Sign up

Export Citation Format

Share Document