scholarly journals Arachidonic acid release from diacylglycerol in human neutrophils. Translocation of diacylglycerol-deacylating enzyme activities from an intracellular pool to plasma membrane upon cell activation

1991 ◽  
Vol 266 (24) ◽  
pp. 15638-15643 ◽  
Author(s):  
J. Balsinde ◽  
E. Diez ◽  
F. Mollinedo
2000 ◽  
Vol 164 (4) ◽  
pp. 2084-2091 ◽  
Author(s):  
John Marshall ◽  
Eric Krump ◽  
Thomas Lindsay ◽  
Gregory Downey ◽  
David A. Ford ◽  
...  

2000 ◽  
Vol 161 (supplement_1) ◽  
pp. S88-S94 ◽  
Author(s):  
NICOLAS FLAMAND ◽  
SYLVIE BOUDREAULT ◽  
SERGE PICARD ◽  
MICHÈLE AUSTIN ◽  
MARC E. SURETTE ◽  
...  

1995 ◽  
Vol 310 (2) ◽  
pp. 681-688 ◽  
Author(s):  
E Krump ◽  
M Pouliot ◽  
P H Naccache ◽  
P Borgeat

The relationship between intracellular calcium concentration ([Ca2+]i), the release of arachidonic acid and the synthesis of leukotriene B4 (LTB4) was investigated using Ca(2+)-depleted human polymorphonuclear leucocytes (PMNs) in which [Ca2+]i can be manipulated by varying the concentration of exogenous Ca2+ added with agonists. In this model, Ca2+, platelet-activating factor (PAF) and N-formyl-Met-Leu-Phe (FMLP), added alone, were unable to induce arachidonic acid release or LTB4 synthesis, as assessed by measurements of the products by MS and HPLC, respectively. However, the simultaneous addition of Ca2+ and either PAF or FMLP to these Ca(2+)-depleted PMNs resulted in an influx of Ca2+ proportional to the extracellular concentration of Ca2+ and caused a substantial release of arachidonic acid and synthesis of LTB4. The [Ca2+]i values for threshold and maximal arachidonic acid release were found to be 150 nM and 350 nM respectively, suggesting the involvement of cytosolic phospholipase A2 (cPLA2). Under stimulatory conditions resulting in similar [Ca2+]i, Ca(2+)-depleted PMNs released significant amounts of arachidonic acid but normal (Ca(2+)-repleted) PMNs did not, indicating that Ca2+ depletion of PMNs altered the normal regulation of arachidonic acid release and facilitated the release of the fatty acid upon stimulation with agonists. cPLA2 and mitogen-activated protein kinase (MAP kinase) phosphorylation, as assessed by changes of electrophoretic mobility, occurred in both Ca(2+)-depleted and Ca(2+)-depleted PMNs upon addition of agonist. These data demonstrate that in Ca(2+)-depleted PMNs stimulated with agonists, arachidonic acid release and LTB4 synthesis correlated with extracellular Ca2+ influx.


1989 ◽  
Vol 263 (3) ◽  
pp. 715-723 ◽  
Author(s):  
S Cockcroft ◽  
J Stutchfield

The relationship between phospholipase A2 and C activation and secretion was investigated in intact human neutrophils and differentiated HL60 cells. Activation by either ATP or fMetLeuPhe leads to [3H]arachidonic acid release into the external medium from prelabelled cells. This response was inhibited when the cells were pretreated with pertussis toxin. When the [3H]arachidonic acid-labelled cells were stimulated with fMetLeuPhe, ATP or Ca2+ ionophore A23187, and the lipids analysed by t.l.c., the increase in free fatty acid was accompanied by decreases in label from phosphatidylinositol and phosphatidylcholine. Moreover, incorporation of label into triacylglycerol and to a lesser extent phosphatidylethanolamine was evident. Activation of secretion was evident with ATP and fMetLeuPhe but not with A23187. The pharmacological specificity of the ATP receptor in HL60 cells was investigated by measuring secretion of beta-glucuronidase, formation of inositol phosphatases and release of [3H]arachidonic acid. External addition of ATP, UTP, ITP, adenosine 5′-[gamma-thio]triphosphate (ATP[S]), adenosine 5′-[beta gamma-imido]triphosphate (App[NH]p), XTP, CTP, GTP, 8-bromo-ATP and guanosine 5′-[gamma-thio]triphosphate (GTP[S]) to intact HL60 cells stimulated inositol phosphate production, but only the first five nucleotides were effective at stimulating secretion or [3H]arachidonic acid release. In human neutrophils, addition of ATP, ITP, UTP and ATP[S] also stimulated secretion from specific and azurophilic granules, and this was accompanied by increases in cytosolic Ca2+ and in [3H]arachidonic acid release. The addition of phorbol 12-myristate 13-acetate (PMA; 1 nM) prior to the addition of either fMetLeuPhe or ATP led to inhibition of phospholipase C activity. In contrast, this had no effect on phospholipase A2 activation, whilst secretion was potentiated. Phospholipase A2 activation by either agonist was dependent on an intact cell metabolism, as was secretion. It is concluded that (1) activation of phospholipase C does not always lead to activation of phospholipase A2, (2) phospholipase A2 is coupled to the receptor independently of phospholipase C via a pertussis-toxin-sensitive G-protein and (3) for secretion to take place, the receptor has to activate both phospholipases C and A2.


1997 ◽  
Vol 273 (6) ◽  
pp. L1132-L1140 ◽  
Author(s):  
Linhua Pang ◽  
Alan J. Knox

Prostanoids may be involved in bradykinin (BK)-induced bronchoconstriction in asthma. We investigated whether cyclooxygenase (COX)-2 induction was involved in prostaglandin (PG) E2 release by BK in cultured human airway smooth muscle (ASM) cells and analyzed the BK receptor subtypes responsible. BK stimulated PGE2release, COX activity, and COX-2 induction in a concentration- and time-dependent manner. It also time dependently enhanced arachidonic acid release. In short-term (15-min) experiments, BK stimulated PGE2 generation but did not increase COX activity or induce COX-2. In long-term (4-h) experiments, BK enhanced PGE2 release and COX activity and induced COX-2. The long-term responses were inhibited by the protein synthesis inhibitors cycloheximide and actinomycin D and the steroid dexamethasone. The effects of BK were mimicked by the B2-receptor agonist [Tyr(Me)8]BK, whereas the B1 agonist des-Arg9-BK was weakly effective at high concentrations. The B2antagonist HOE-140 potently inhibited all the effects, but the B1 antagonist des-Arg9,(Leu8)-BK was inactive. This study is the first to demonstrate that BK can induce COX-2. Conversion of increased arachidonic acid release to PGE2 by COX-1 is mainly involved in the short-term effect, whereas B2 receptor-related COX-2 induction is important in the long-term PGE2 release.


Sign in / Sign up

Export Citation Format

Share Document