scholarly journals Adenylate cyclase system of bovine adrenal plasma membranes.

1975 ◽  
Vol 250 (4) ◽  
pp. 1186-1192
Author(s):  
F M Finn ◽  
J A Montibeller ◽  
Y Ushijima ◽  
K Hofmann
1972 ◽  
Vol 247 (7) ◽  
pp. 2038-2043 ◽  
Author(s):  
Lutz Birnbaumer ◽  
Stephen L. Pohl ◽  
Martin Rodbell ◽  
Finn Sundby

1982 ◽  
Vol 2 (12) ◽  
pp. 1481-1491
Author(s):  
Patrick K. Jaynes ◽  
James P. McDonough ◽  
Henry R. Mahler

We have examined the possible role of adenosine 3′,5′-phosphate (cAMP) in functions associated with the plasma membranes of Saccharomyces cerevisiae. Purified membranes from this source contained an adenylate cyclase which was insensitive to activation by fluoride or guanine nucleotides, only weakly responsive to changes of carbon source in the growth medium, and strongly stimulated by vanadate. They also contained at least two classes of receptor proteins for guanine nucleotides (as measured by binding of labeled 5′-guanylyl methylene diphosphate) with apparent dissociation constants equal to 1.0 × 10 −7 and 3 × 10 −6 M, a protein kinase capable of phosphorylating added histones, the activity of which was stimulated by cAMP, and cAMP receptors that may function as regulatory subunits for this kinase. Membrane proteins were also susceptible to phosphorylation by endogenous kinase(s), with polypeptides of apparent molecular weights equal to 160 × 10 3 , 135 × 10 3 , 114 × 10 3 , and 58 × 10 3 as the major targets. Of these, the 114,000-molecular-weight polypeptide was probably identical to the proton-translocating ATPase of the membranes. However, the cAMP-dependent protein kinase did not appear to be involved in these reactions. Intact ( rho + or rho 0 ) cells responded to dissipation of the proton electrochemical gradient across their plasma membranes by rapid and transient changes in their intracellular level of cAMP, as suggested earlier (J. M. Trevillyan and M. L. Pall, J. Bacteriol., 138 :397-403, 1979). Thus, although yeast plasma membranes contain all the essential components of a stimulus-responsive adenylate cyclase system, the precise nature of the coupling device and the targets involved remain to be established.


1983 ◽  
Vol 61 (7) ◽  
pp. 547-552 ◽  
Author(s):  
Bernard P. Schimmer

Fractions enriched in plasma membranes were prepared from the Y1 mouse adrenocortical tumor cell line and were characterized with respect to adenylate cyclase activity. Optimal requirements of the adenylate cyclase system for guanyl nucleotides, Mg2+, ATP, and corticotropin (ACTH) were determined. The sensitivity of the adenylate cyclase system to ACTH1–24 in plasma membrane fractions was comparable with that observed in isolated intact cells. Polycations such as poly-L-arginine and histone competitively inhibited the action of ACTH1–24, supporting the view that the affinity of ACTH for the adenylate cyclase system is determined by the basic core of amino acids at residues 15–18. ACTH1–24 was at least one order of magnitude more potent than ACTH1–39 in stimulating adenylate cyclase activity in plasma membrane fractions.


1982 ◽  
Vol 2 (12) ◽  
pp. 1481-1491 ◽  
Author(s):  
Patrick K. Jaynes ◽  
James P. McDonough ◽  
Henry R. Mahler

We have examined the possible role of adenosine 3′,5′-phosphate (cAMP) in functions associated with the plasma membranes ofSaccharomyces cerevisiae.Purified membranes from this source contained an adenylate cyclase which was insensitive to activation by fluoride or guanine nucleotides, only weakly responsive to changes of carbon source in the growth medium, and strongly stimulated by vanadate. They also contained at least two classes of receptor proteins for guanine nucleotides (as measured by binding of labeled 5′-guanylyl methylene diphosphate) with apparent dissociation constants equal to 1.0 × 10−7and 3 × 10−6M, a protein kinase capable of phosphorylating added histones, the activity of which was stimulated by cAMP, and cAMP receptors that may function as regulatory subunits for this kinase. Membrane proteins were also susceptible to phosphorylation by endogenous kinase(s), with polypeptides of apparent molecular weights equal to 160 × 103, 135 × 103, 114 × 103, and 58 × 103as the major targets. Of these, the 114,000-molecular-weight polypeptide was probably identical to the proton-translocating ATPase of the membranes. However, the cAMP-dependent protein kinase did not appear to be involved in these reactions. Intact (rho+orrho0) cells responded to dissipation of the proton electrochemical gradient across their plasma membranes by rapid and transient changes in their intracellular level of cAMP, as suggested earlier (J. M. Trevillyan and M. L. Pall, J. Bacteriol.,138:397-403, 1979). Thus, although yeast plasma membranes contain all the essential components of a stimulus-responsive adenylate cyclase system, the precise nature of the coupling device and the targets involved remain to be established.


1988 ◽  
Vol 254 (1) ◽  
pp. 15-20 ◽  
Author(s):  
J M Stadel ◽  
S T Crooke

Fluoride ion, presumably an Al3+-F- complex, has been proposed to activate the guanine nucleotide regulatory protein (G-protein) of the visual system, transducin, by associating with GDP at the nucleotide-binding site and thus mimicking the effects of non-hydrolysable GTP analogues [Bigay, Deterre, Pfister & Chabre (1985) FEBS Lett. 191, 181-85]. We have examined this proposed model by using the adenylate cyclase complexes of frog erythrocytes, S49 lymphoma cells and human platelets. Preincubation of plasma membranes from frog erythrocytes and S49 cells with 20 mM-fluoride for 20 min at 30 degrees C strongly stimulated adenylate cyclase activity. In contrast, the preactivated membranes were still able to bind beta-adrenergic agonist with high affinity, as determined by radioligand-binding techniques. Moreover, high-affinity agonist binding in fluoride-treated membranes was fully sensitive to guanine nucleotide, which decreased beta-adrenergic-receptor affinity for agonist. Very similar results were obtained for [3H]prostaglandin E1 binding to S49 membranes pretreated with fluoride. Incubation of human platelet membranes with increasing concentrations of fluoride (1-50 mM) resulted in biphasic regulation of adenylate cyclase activity, with inhibition observed at concentrations greater than 10 mM. Preincubation of platelet membranes with 20 mM-fluoride did not affect agonist high-affinity binding to alpha 2-adrenergic receptors, nor receptor regulation by guanine nucleotide. These results suggest that the model developed from the study of transducin may not be generally applicable to the G-proteins of the adenylate cyclase system.


1992 ◽  
Vol 281 (2) ◽  
pp. 333-337 ◽  
Author(s):  
M Ros ◽  
G Alonso ◽  
F J Moreno

The effects of litter removal on the status of different components of the hormone-sensitive adenylate cyclase system were analysed in plasma membranes of rat adipocytes. These effects were correlated with the decreased lipolytic response of adipose tissue. No changes in total number of A1 adenosine receptors or their affinity were detected in response to litter removal. In contrast, beta-adrenergic receptors showed a decrease (35%) in total number of receptors, without any significant change in their affinity. The status of alpha-GS and alpha-Gi, the alpha-subunits of G proteins which mediate stimulation and inhibition respectively of adenylate cyclase, were probed by cholera- and pertussis-toxin-catalysed ADP-ribosylation respectively and by immunoblot. Associated with litter removal, decreases of 63% and 62% in the incorporation of [alpha 32P]ADP-ribose catalysed by cholera toxin and pertussis toxin into alpha-Gs and alpha-Gi respectively were detected. Immunoblotting using RM/1 (anti-alpha-Gs) and AS/7 (anti-alpha-Gi) antisera also showed decreases in the levels of alpha-Gs (52%) and alpha-Gi (55%) in adipocyte membranes from litter-removed rats compared with lactating rats. Alterations in the status of hormone-sensitive adenylate cyclase components, such as those described herein, may be biochemical mechanism(s) by which adipose tissue shows a decreased lipolytic response during recovery from lactation.


Sign in / Sign up

Export Citation Format

Share Document