scholarly journals Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication.

1993 ◽  
Vol 268 (35) ◽  
pp. 26179-26189
Author(s):  
W C Copeland ◽  
T S Wang
2009 ◽  
Vol 191 (13) ◽  
pp. 4268-4275 ◽  
Author(s):  
Lin Cheng ◽  
Kenneth C. Keiler

ABSTRACT The trans translation pathway for protein tagging and ribosome release has been found in all bacteria and is required for proliferation and differentiation in many systems. Caulobacter crescentus mutants that lack the trans translation pathway have a defect in the cell cycle and do not initiate DNA replication at the correct time. To determine the molecular basis for this phenotype, effects on events known to be important for initiation of DNA replication were investigated. In the absence of trans translation, transcription from the dnaA promoter and an origin-proximal promoter involved in replication initiation is delayed. Characterization of the dnaA promoter revealed two cis-acting elements that have dramatic effects on dnaA gene expression. A 5′ leader sequence in dnaA mRNA represses gene expression by >15-fold but does not affect the timing of dnaA expression. The second cis-acting element, a sequence upstream of the −35 region, affects both the amount of dnaA transcription and the timing of transcription in response to trans translation. Mutations in this promoter element eliminate the transcription delay and partially suppress the DNA replication phenotype in mutants lacking trans translation activity. These results suggest that the trans translation capacity of the cell is sensed through the dnaA promoter to control the timing of DNA replication initiation.


2019 ◽  
Vol 16 (3) ◽  
pp. 272-277 ◽  
Author(s):  
Rasmus N. Klitgaard ◽  
Anders Løbner-Olesen

Background:One of many strategies to overcome antibiotic resistance is the discovery of compounds targeting cellular processes, which have not yet been exploited.Materials and Methods:Using various genetic tools, we constructed a novel high throughput, cellbased, fluorescence screen for inhibitors of chromosome replication initiation in bacteria.Results:The screen was validated by expression of an intra-cellular cyclic peptide interfering with the initiator protein DnaA and by over-expression of the negative initiation regulator SeqA. We also demonstrated that neither tetracycline nor ciprofloxacin triggers a false positive result. Finally, 400 extracts isolated mainly from filamentous actinomycetes were subjected to the screen.Conclusion:We concluded that the presented screen is applicable for identifying putative inhibitors of DNA replication initiation in a high throughput setup.


1981 ◽  
Vol 64 (4) ◽  
pp. 875-883
Author(s):  
Shiv K Soni ◽  
Daniel Van Gelder

Abstract Due to the existence of 2 asymmetric carbon atoms in: the propoxyphene molecule, there are 4 diastereomers: alpha dextro, alpha levo, beta dextro, and beta levo. Only α-d-propoxyphene is included under the federal Controlled Substances Act. Baseline separations of propoxyphene from various incipients (aspirin, caffeine, phenacetin, and acetaminophen) present in pharmaceutical and illicit preparations, and between the alpha and beta diastereomers, were achieved by high pressure liquid chromatography. The column eluant was collected and propoxyphene was extracted. The optical isomers were differentiated and characterized by melting points and by chemical microcrystalline tests. Using hot stage thermomicroscopy, the eutectic melting points of binary isomeric mixtures of propoxyphene bases and salts were found to be depressed about 10° and 15-30°C, respectively, below the individual isomer melting points. The characteristic microcrystals formed with the alpha racemic mixtures by using a glycerin-aqueous gold chloride reagent were not produced by the beta racemic mixtures.


Sign in / Sign up

Export Citation Format

Share Document