Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb

2003 ◽  
Vol 36 (7) ◽  
pp. 929-936 ◽  
Author(s):  
B.W. Stansfield ◽  
A.C. Nicol ◽  
J.P. Paul ◽  
I.G. Kelly ◽  
F. Graichen ◽  
...  
2021 ◽  
Vol 3 ◽  
Author(s):  
Callum Buehler ◽  
Willi Koller ◽  
Florentina De Comtes ◽  
Hans Kainz

An increase in hip joint contact forces (HJCFs) is one of the main contributing mechanical causes of hip joint pathologies, such as hip osteoarthritis, and its progression. The strengthening of the surrounding muscles of the joint is a way to increase joint stability, which results in the reduction of HJCF. Most of the exercise recommendations are based on expert opinions instead of evidence-based facts. This study aimed to quantify muscle forces and joint loading during rehabilitative exercises using an elastic resistance band (ERB). Hip exercise movements of 16 healthy volunteers were recorded using a three-dimensional motion capture system and two force plates. All exercises were performed without and with an ERB and two execution velocities. Hip joint kinematics, kinetics, muscle forces, and HJCF were calculated based on the musculoskeletal simulations in OpenSim. Time-normalized waveforms of the different exercise modalities were compared with each other and with reference values found during walking. The results showed that training with an ERB increases both target muscle forces and HJCF. Furthermore, the ERB reduced the hip joint range of motion during the exercises. The type of ERB used (soft vs. stiff ERB) and the execution velocity of the exercise had a minor impact on the peak muscle forces and HJCF. The velocity of exercise execution, however, had an influence on the total required muscle force. Performing hip exercises without an ERB resulted in similar or lower peak HJCF and lower muscle forces than those found during walking. Adding an ERB during hip exercises increased the peak muscle and HJCF but the values remained below those found during walking. Our workflow and findings can be used in conjunction with future studies to support exercise design.


Author(s):  
Yinghu Peng ◽  
Duo Wai-Chi Wong ◽  
Yan Wang ◽  
Tony Lin-Wei Chen ◽  
Qitao Tan ◽  
...  

Flatfoot is linked to secondary lower limb joint problems, such as patellofemoral pain. This study aimed to investigate the influence of medial posting insoles on the joint mechanics of the lower extremity in adults with flatfoot. Gait analysis was performed on fifteen young adults with flatfoot under two conditions: walking with shoes and foot orthoses (WSFO), and walking with shoes (WS) in random order. The data collected by a vicon system were used to drive the musculoskeletal model to estimate the hip, patellofemoral, ankle, medial and lateral tibiofemoral joint contact forces. The joint contact forces in WSFO and WS conditions were compared. Compared to the WS group, the second peak patellofemoral contact force (p < 0.05) and the peak ankle contact force (p < 0.05) were significantly lower in the WSFO group by 10.2% and 6.8%, respectively. The foot orthosis significantly reduced the peak ankle eversion angle (p < 0.05) and ankle eversion moment (p < 0.05); however, the peak knee adduction moment increased (p < 0.05). The reduction in the patellofemoral joint force and ankle contact force could potentially inhibit flatfoot-induced lower limb joint problems, despite a greater knee adduction moment.


Author(s):  
Hannah J. Lundberg ◽  
Markus A. Wimmer

Detailed knowledge of in vivo knee contact forces and the contribution from muscles, ligaments, and other soft-tissues to knee joint function are essential for evaluating total knee replacement (TKR) designs. We have recently developed a mathematical model for calculating knee joint contact forces using parametric methodology (Lundberg et al., 2009). The numerical model calculates a “solution space” of three-dimensional contact forces for both the medial and lateral compartments of the tibial plateau. The solution spaces are physiologically meaningful, and represent the result of balancing the external moments and forces by different strategies.


2008 ◽  
Vol 41 (6) ◽  
pp. 1243-1252 ◽  
Author(s):  
G. Lenaerts ◽  
F. De Groote ◽  
B. Demeulenaere ◽  
M. Mulier ◽  
G. Van der Perre ◽  
...  

2017 ◽  
Vol 11 (4) ◽  
pp. 562-569 ◽  
Author(s):  
Ken Sasaki ◽  
Michio Hongo ◽  
Naohisa Miyakoshi ◽  
Toshiki Matsunaga ◽  
Shin Yamada ◽  
...  

<sec><title>Study Design</title><p>In vivo biomechanical study using a three-dimensional (3D) musculoskeletal model for elderly individuals with or without pelvic retroversion.</p></sec><sec><title>Purpose</title><p>To evaluate the effect of pelvic retroversion on the sagittal alignment of the spine, pelvis, and lower limb in elderly females while standing and walking.</p></sec><sec><title>Overview of Literature</title><p>Patients with hip–spine syndrome have concurrent hip-joint and spine diseases. However, the dynamic sagittal alignment between the hip joint and spine has rarely been investigated. We used a 3D musculoskeletal model to evaluate global spinopelvic parameters, including spinal inclination and pelvic tilt (PT).</p></sec><sec><title>Methods</title><p>A total of 32 ambulant females (mean age=78 years) without assistance were enrolled in the study. On the basis of the radiographic measurement for PT, participants were divided into the pelvic retroversion group (R-group; PT≥20°) and the normal group (N-group; PT&lt;20°). A 3D musculoskeletal motion analysis system was used to analyze the calculated value for the alignment of spine, pelvis, and lower limb, including calculated (C)-PT, sagittal vertical axis (C-SVA), pelvic incidence, lumbar lordosis, T1 pelvic angle (C-TPA), as well as knee and hip flexion angles while standing and walking.</p></sec><sec><title>Results</title><p>While standing, C-PT and C-TPA in the R-group were significantly larger than those in the N-group. Hip angle was significantly smaller in the R-group than in the N-group, unlike knee angle, which did not show difference. While walking, C-SVA and C-TPA were significantly increased, whereas C-PT decreased compared with those while standing. The maximum hip-flexion angle was significantly smaller in the R-group than in the N-group. There was a significant correlation between the radiographic and calculated parameters.</p></sec><sec><title>Conclusions</title><p>The 3D musculoskeletal model was useful in evaluating the sagittal alignment of the spine, pelvis, and leg. Spinopelvic sagittal alignment showed deterioration while walking. C-PT was significantly decreased while walking in the R-group, indicating possible compensatory mechanisms attempting to increase coverage of the femoral head. The reduction in the hip flexion angle in the R-group was also considered as a compensatory mechanism.</p></sec>


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1306
Author(s):  
Claude Fiifi Hayford ◽  
Emma Pratt ◽  
John P. Cashman ◽  
Owain G. Evans ◽  
Claudia Mazzà

Multibody optimisation approaches have not seen much use in routine clinical applications despite evidence of improvements in modelling through a reduction in soft tissue artifacts compared to the standard gait analysis technique of direct kinematics. To inform clinical use, this study investigated the consistency with which both approaches predicted post-surgical outcomes, using changes in Gait Profile Score (GPS) when compared to a clinical assessment of outcome that did not include the 3D gait data. Retrospective three-dimensional motion capture data were utilised from 34 typically developing children and 26 children with cerebral palsy who underwent femoral derotation osteotomies as part of Single Event Multi-Level Surgeries. Results indicated that while, as expected, the GPS estimated from the two methods were numerically different, they were strongly correlated (Spearman’s ρ = 0.93), and no significant differences were observed between their estimations of change in GPS after surgery. The two scores equivalently classified a worsening or improvement in the gait quality in 93% of the cases. When compared with the clinical classification of responders versus non-responders to the intervention, an equivalent performance was found for the two approaches, with 27/41 and 28/41 cases in agreement with the clinical judgement for multibody optimisation and direct kinematics, respectively. With this equivalent performance to the direct kinematics approach and the benefit of being less sensitive to skin artefact and allowing additional analysis such as estimation of musculotendon lengths and joint contact forces, multibody optimisation has the potential to improve the clinical decision-making process in children with cerebral palsy.


Author(s):  
Lauren Sepp ◽  
Brian S Baum ◽  
Erika Nelson-Wong ◽  
Anne Silverman

Abstract People with unilateral transtibial amputations (TTA) have greater risks of bilateral hip osteoarthritis, related to asymmetric biomechanics compared to people without TTA. Running is beneficial for physical health and is gaining popularity. However, people with TTA may not have access to running-specific prostheses (RSPs), which are designed for running, and may instead run using their daily-use prosthesis (DUP). Differences in joint loading may result from prosthesis choice, thus it is important to characterize changes in peak and impulsive hip joint contact loading during running. Six people with and without TTA ran at 3.5 m/s while ground reaction forces, kinematics, and electromyography were collected. People with TTA ran using their own RSP and repeated the protocol using their own DUP. Musculoskeletal models incorporating prosthesis type of each individual were used to quantify individual muscle forces and hip joint contact forces during running. People using RSPs had smaller bilateral peak hip joint contact forces compared to when wearing DUPs during stance and swing, and a smaller impulse over the entire gait cycle. Greater amputated leg peak hip joint contact forces for people wearing DUPs compared to RSPs occurred with greater forces from the ipsilateral gluteus maximus during stance. People with TTA also had greater bilateral peak hip joint contact forces during swing compared to people without TTA, which occurred with greater peak gluteus medius forces. Running with more compliant RSPs may be beneficial for long-term joint health by reducing peak and impulsive hip loading compared to DUPs.


Author(s):  
Ali Marzban ◽  
Hamid Nayeb-Hashemi ◽  
Paul K. Canavan

The process of adaptive bone remodeling can be described mathematically and simulated with a self-optimizing finite element method (FEM) model. The aim of this study was to understand the effect of the basic remodeling rule on the bone density distribution of the proximal femur affected by the muscle loadings and the hip joint contact forces during normal gait (walking). The basic remodeling rule, which is an objective function for an optimization process relative to external load, was applied to predict the bone density. The purpose of the process is to obtain a constant value for the strain energy per unit bone mass, by adapting density modeling. The precise solution is dependent on the magnitude and direction of loads, loading rate, initial conditions and the parameters in the remodeling rule. In this study, we applied adaptive bone density remodeling under both static and dynamic loading conditions. In the static case, the forces at different phases in the gait cycle were statically applied as boundary conditions. The density distributions from these loadings were averaged to find the density distribution in the proximal femur. Three different initial densities were considered to investigate the effect of initial conditions. The influence of different parameters and functions on the density distribution and its convergence rate was also investigated. Furthermore, effect of changing of muscle loading and hip joint contact forces on resultant mass and density distribution of proximal femur was studied. In the dynamic approach, the forces of different phases of gait cycle were applied during different gait cycle’s times of 1.27 second (slow speed), 1.11 second (normal speed), 1.01 second (moderately fast speed), and 0.83 second (very fast speed). Although the results of bone density adaptations in both approaches were comparable with an example of an actual bone density distribution of the femoral head, neck and the proximal femoral shaft; the converged density distribution in the static approach was smoother and more realistic. It was shown that by applying more loading conditions through the gait cycle the converged density distribution is smoother. The resultant density distribution was more comparable with actual proximal femur compared to past studies.


Sign in / Sign up

Export Citation Format

Share Document