scholarly journals Immediate Effects of Medially Posted Insoles on Lower Limb Joint Contact Forces in Adult Acquired Flatfoot: A Pilot Study

Author(s):  
Yinghu Peng ◽  
Duo Wai-Chi Wong ◽  
Yan Wang ◽  
Tony Lin-Wei Chen ◽  
Qitao Tan ◽  
...  

Flatfoot is linked to secondary lower limb joint problems, such as patellofemoral pain. This study aimed to investigate the influence of medial posting insoles on the joint mechanics of the lower extremity in adults with flatfoot. Gait analysis was performed on fifteen young adults with flatfoot under two conditions: walking with shoes and foot orthoses (WSFO), and walking with shoes (WS) in random order. The data collected by a vicon system were used to drive the musculoskeletal model to estimate the hip, patellofemoral, ankle, medial and lateral tibiofemoral joint contact forces. The joint contact forces in WSFO and WS conditions were compared. Compared to the WS group, the second peak patellofemoral contact force (p < 0.05) and the peak ankle contact force (p < 0.05) were significantly lower in the WSFO group by 10.2% and 6.8%, respectively. The foot orthosis significantly reduced the peak ankle eversion angle (p < 0.05) and ankle eversion moment (p < 0.05); however, the peak knee adduction moment increased (p < 0.05). The reduction in the patellofemoral joint force and ankle contact force could potentially inhibit flatfoot-induced lower limb joint problems, despite a greater knee adduction moment.

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1681 ◽  
Author(s):  
Jason Konrath ◽  
Angelos Karatsidis ◽  
H. Schepers ◽  
Giovanni Bellusci ◽  
Mark de Zee ◽  
...  

Knee osteoarthritis is a major cause of pain and disability in the elderly population with many daily living activities being difficult to perform as a result of this disease. The present study aimed to estimate the knee adduction moment and tibiofemoral joint contact force during daily living activities using a musculoskeletal model with inertial motion capture derived kinematics in an elderly population. Eight elderly participants were instrumented with 17 inertial measurement units, as well as 53 opto-reflective markers affixed to anatomical landmarks. Participants performed stair ascent, stair descent, and sit-to-stand movements while both motion capture methods were synchronously recorded. A musculoskeletal model containing 39 degrees-of-freedom was used to estimate the knee adduction moment and tibiofemoral joint contact force. Strong to excellent Pearson correlation coefficients were found for the IMC-derived kinematics across the daily living tasks with root mean square errors (RMSE) between 3° and 7°. Furthermore, moderate to strong Pearson correlation coefficients were found in the knee adduction moment and tibiofemoral joint contact forces with RMSE between 0.006–0.014 body weight × body height and 0.4 to 1 body weights, respectively. These findings demonstrate that inertial motion capture may be used to estimate knee adduction moments and tibiofemoral contact forces with comparable accuracy to optical motion capture.


2010 ◽  
Vol 4 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Paola Formento Catalfamo ◽  
Gerardo Aguiar ◽  
Jorge Curi ◽  
Ariel Braidot

Previous research has shown that an increase in hamstring activation may compensate for anterior tibial transalation (ATT) in patients with anterior cruciate ligament deficient knee (ACLd); however, the effects of this compensation still remain unclear. The goals of this study were to quantify the activation of the hamstring muscles needed to compensate the ATT in ACLd knee during the complete gait cycle and to evaluate the effect of this compensation on quadriceps activation and joint contact forces. A two dimensional model of the knee was used, which included the tibiofemoral and patellofemoral joints, knee ligaments, the medial capsule and two muscles units. Simulations were conducted to determine the ATT in healthy and ACLd knee and the hamstring activation needed to correct the abnormal ATT to normal levels (100% compensation) and to 50% compensation. Then, the quadriceps activation and the joint contact forces were calculated. Results showed that 100% compensation would require hamstring and quadriceps activations larger than their maximum isometric force, and would generate an increment in the peak contact force at the tibiofemoral (115%) and patellofemoral (48%) joint with respect to the healthy knee. On the other hand, 50% compensation would require less force generated by the muscles (less than 0.85 of maximum isometric force) and smaller contact forces (peak tibiofemoral contact force increased 23% and peak patellofemoral contact force decreased 7.5% with respect to the healthy knee). Total compensation of ATT by means of increased hamstring activity is possible; however, partial compensation represents a less deleterious strategy.


2018 ◽  
Vol 34 (5) ◽  
pp. 419-423 ◽  
Author(s):  
Christopher M. Saliba ◽  
Allison L. Clouthier ◽  
Scott C.E. Brandon ◽  
Michael J. Rainbow ◽  
Kevin J. Deluzio

Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a noninvasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis, and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) root mean square differences of 0.17 (0.05) bodyweight compared with the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.


Author(s):  
Daniel P. Nicolella ◽  
Barron Bichon ◽  
W. Loren Francis ◽  
Travis D. Eliason

It is widely accepted that the mechanical environment within the knee, or more specifically, increased or altered stresses or strains generated within the cartilage, is a leading cause of knee osteoarthritis (OA). However, a significant unfulfilled technological challenge in musculoskeletal biomechanics and OA research has been determining the dynamic mechanical environment of the cartilage (and other components) resulting from routine and non-routine physical movements. There are two methods of investigating musculoskeletal joint mechanics that have been used to date: 1) forward and inverse multibody dynamic simulations of human movement and 2) detailed quasi-static finite element modeling of individual joints. The overwhelming majority of work has been focused on musculoskeletal multibody dynamics modeling. This method, in combination with experimental motion capture and analysis, has been integral to understanding torques, muscle and ligament forces, and reaction forces occurring at the joint during activities such as walking, running, squatting, and jumping as well as providing key insights into musculoskeletal motor control schemes. However, multibody dynamics simulations do not allow for the detailed continuum level analysis of the mechanical environment of the cartilage and other knee joint structures (meniscus, ligaments, and underlying bone) within the knee during physical activities. This is a critical technology gap that is required to understand the relationship between functional or injurious loading of the knee and cartilage degradation. We have developed a detailed neuromuscularly activated dynamic finite element model of the human lower body and have used this model to simultaneously determine the dynamic muscle forces, joint kinematics, contact forces, and detailed (e.g., continuum) stresses and strains within the knee (cartilage, meniscus, ligaments, and bone) during several increasingly complex neuromuscularly controlled and actuated lower limb movements. Motion at each joint is controlled explicitly via deformable cartilage-to-cartilage surface contact at each articular surface (rather than idealized as simple revolute or ball and socket joints). The major muscles activating the lower limb are explicitly modeled with Hill-type active force generating springs using anatomical muscle insertion points and geometric wrapping. Muscle activation dynamics were determined via a constrained optimization scheme to minimize muscle activation energy. Time histories of the mechanical environment of all soft tissues within the knee are determined for a simulated leg extension.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Kurt Manal ◽  
Thomas S. Buchanan

Computational models that predict internal joint forces have the potential to enhance our understanding of normal and pathological movement. Validation studies of modeling results are necessary if such models are to be adopted by clinicians to complement patient treatment and rehabilitation. The purposes of this paper are: (1) to describe an electromyogram (EMG)-driven modeling approach to predict knee joint contact forces, and (2) to evaluate the accuracy of model predictions for two distinctly different gait patterns (normal walking and medial thrust gait) against known values for a patient with a force recording knee prosthesis. Blinded model predictions and revised model estimates for knee joint contact forces are reported for our entry in the 2012 Grand Challenge to predict in vivo knee loads. The EMG-driven model correctly predicted that medial compartment contact force for the medial thrust gait increased despite the decrease in knee adduction moment. Model accuracy was high: the difference in peak loading was less than 0.01 bodyweight (BW) with an R2 = 0.92. The model also predicted lateral loading for the normal walking trial with good accuracy exhibiting a peak loading difference of 0.04 BW and an R2 = 0.44. Overall, the EMG-driven model captured the general shape and timing of the contact force profiles and with accurate input data the model estimated joint contact forces with sufficient accuracy to enhance the interpretation of joint loading beyond what is possible from data obtained from standard motion capture studies.


2015 ◽  
Vol 2 (6) ◽  
pp. 140449 ◽  
Author(s):  
Daniel J. Cleather ◽  
Anthony M. J. Bull

Traditional approaches to the biomechanical analysis of movement are joint-based; that is the mechanics of the body are described in terms of the forces and moments acting at the joints, and that muscular forces are considered to create moments about the joints. We have recently shown that segment-based approaches, where the mechanics of the body are described by considering the effect of the muscle, ligament and joint contact forces on the segments themselves, can also prove insightful. We have also previously described a simultaneous, optimization-based, musculoskeletal model of the lower limb. However, this prior model incorporates both joint- and segment-based assumptions. The purpose of this study was therefore to develop an entirely segment-based model of the lower limb and to compare its performance to our previous work. The segment-based model was used to estimate the muscle forces found during vertical jumping, which were in turn compared with the muscular activations that have been found in vertical jumping, by using a Geers' metric to quantify the magnitude and phase errors. The segment-based model was shown to have a similar ability to estimate muscle forces as a model based upon our previous work. In the future, we will evaluate the ability of the segment-based model to be used to provide results with clinical relevance, and compare its performance to joint-based approaches. The segment-based model described in this article is publicly available as a GUI-based M atlab ® application and in the original source code (at www.msksoftware.org.uk ).


2017 ◽  
Vol 25 (3) ◽  
pp. 90-99
Author(s):  
Atefeh Jafari sarv oliya ◽  
Mohammad taghi Karimi ◽  
Keyvan Sharifmoradi ◽  
Azadeh Naderi ◽  
Parastoo Saljoghiyan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document