scholarly journals Metabolic performance of the squid Lolliguncula brevis (Cephalopoda) during hypoxia: an analysis of the critical PO2

2000 ◽  
Vol 243 (2) ◽  
pp. 241-259 ◽  
Author(s):  
S Zielinski ◽  
P.G Lee ◽  
H.O Pörtner
2005 ◽  
Vol 294 ◽  
pp. 189-200 ◽  
Author(s):  
LD Rutherford ◽  
EV Thuesen

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Olga V. Bondareva ◽  
Nadezhda A. Potapova ◽  
Kirill A. Konovalov ◽  
Tatyana V. Petrova ◽  
Natalia I. Abramson

Abstract Background Mitochondrial genes encode proteins involved in oxidative phosphorylation. Variations in lifestyle and ecological niche can be directly reflected in metabolic performance. Subterranean rodents represent a good model for testing hypotheses on adaptive evolution driven by important ecological shifts. Voles and lemmings of the subfamily Arvicolinae (Rodentia: Cricetidae) provide a good example for studies of adaptive radiation. This is the youngest group within the order Rodentia showing the fastest rates of diversification, including the transition to the subterranean lifestyle in several phylogenetically independent lineages. Results We evaluated the signatures of selection in the mitochondrial cytochrome b (cytB) gene in 62 Arvicolinae species characterized by either subterranean or surface-dwelling lifestyle by assessing amino acid sequence variation, exploring the functional consequences of the observed variation in the tertiary protein structure, and estimating selection pressure. Our analysis revealed that: (1) three of the convergent amino acid substitutions were found among phylogenetically distant subterranean species and (2) these substitutions may have an influence on the protein complex structure, (3) cytB showed an increased ω and evidence of relaxed selection in subterranean lineages, relative to non-subterranean, and (4) eight protein domains possess increased nonsynonymous substitutions ratio in subterranean species. Conclusions Our study provides insights into the adaptive evolution of the cytochrome b gene in the Arvicolinae subfamily and its potential implications in the molecular mechanism of adaptation. We present a framework for future characterizations of the impact of specific mutations on the function, physiology, and interactions of the mtDNA-encoded proteins involved in oxidative phosphorylation.


2021 ◽  
Vol 53 (2) ◽  
Author(s):  
David Esteban Contreras Marquez ◽  
Emiro Rafael Canchila Asensio ◽  
Edwin Davier Correa Rojas ◽  
Candido José Ramírez Villareal ◽  
Yeisson Yesid Robles Yaruro ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
William G. O’Brien III ◽  
Vladimir Berka ◽  
Ah-Lim Tsai ◽  
Zhaoyang Zhao ◽  
Cheng Chi Lee

Author(s):  
Camille J. Macnaughton ◽  
Travis C. Durhack ◽  
Neil J. Mochnacz ◽  
Eva C. Enders

The physiology and behaviour of fish are strongly affected by ambient water temperature. Physiological traits related to metabolism, such as aerobic scope (AS), can be measured across temperature gradients and the resulting performance curve reflects the thermal niche that fish can occupy. We measured AS of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi) at 5, 10, 15, 20, and 22°C and compared temperature preference (Tpref) of the species to non-native Brook Trout, Brown Trout, and Rainbow Trout. Intermittent-flow respirometry experiments demonstrated that metabolic performance of Westslope Cutthroat Trout was optimal at ~15 °C and decreased substantially beyond this temperature, until lethal temperatures at ~25 °C. Adjusted preferred temperatures across species (Tpref) were comparatively high, ranging from 17.8-19.9 °C, with the highest Tpref observed for Westslope Cutthroat Trout. Results suggest that although Westslope Cutthroat Trout is considered a cold-water species, they do not prefer or perform as well in cold water (≤ 10°C), thus, can occupy a warmer thermal niche than previously thought. The metabolic performance curve (AS) can be used to develop species‐specific thermal criteria to delineate important thermal habitats and guide conservation and recovery actions for Westslope Cutthroat Trout.


2012 ◽  
Vol 102 (2) ◽  
pp. 131-137 ◽  
Author(s):  
Marta J. Cremer ◽  
Pedro C. Pinheiro ◽  
Paulo C. Simões-Lopes

The present study provides information about the diet of sympatric populations of small cetaceans in the Babitonga Bay estuary. This is the first study on the diet of these species in direct sympatry. The stomach contents of seven Guiana dolphins Sotalia guianensis and eight franciscanas Pontoporia blainvillei were analyzed. The prey of both cetaceans was mostly teleost fishes, followed by cephalopods. We identified 13 teleost fishes as part of the diet of the franciscanas, and 20 as part of the diet of Guiana dolphins. Lolliguncula brevis was the only cephalopod recorded, and was the most important prey for both cetaceans. Stellifer rastrifer and Gobionellus oceanicus were also important for franciscana, so as Mugil curema and Micropogonias furnieri were important for Guiana dolphins. Stellifer rastrifer and Cetengraulis edentulus were the fishes with the highest frequency of occurrence for franciscana (50%), while Achirus lineatus, C. edentulus, S. brasiliensis, Cynoscion leiarchus, M. furnieri, M. curema, Diapterus rhombeus, Eugerres brasilianus and G. oceanicus showed 28.6% of frequency of occurrence for Guiana dolphins. Franciscanas captured greater cephalopods than the Guiana dolphins in both total length (z= -3.38; n= 40; p< 0.05) and biomass (z = -2.46; n = 40; p<0.05). All of the prey species identified occur inside the estuary, which represents a safe habitat against predators and food availability, reinforcing the importance of the Babitonga Bay for these cetacean populations.


2015 ◽  
Vol 73 (3) ◽  
pp. 613-619 ◽  
Author(s):  
Tae Won Kim ◽  
Josi Taylor ◽  
Chris Lovera ◽  
James P. Barry

Abstract Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species due to the relatively stable conditions in deep waters for most parameters (e.g. temperature, salinity, oxygen, and pH). To explore the potential for deep-sea hermit crabs (Pagurus tanneri) to acclimate to future ocean acidification, we compared their olfactory and metabolic performance under ambient (pH ∼7.6) and expected future (pH ∼7.1) conditions. After exposure to reduced pH waters, metabolic rates of hermit crabs increased transiently and olfactory behaviour was impaired, including antennular flicking and prey detection. Crabs exposed to low pH treatments exhibited higher individual variation for both the speed of antennular flicking and speed of prey detection, than observed in the control pH treatment, suggesting that phenotypic diversity could promote adaptation to future ocean acidification.


2019 ◽  
Vol 32 ◽  
pp. 282-290
Author(s):  
Nada A. El-Qatrani

This study was carried out in the nursery of Department of Horticulture and Landscape Design, College of Agriculture, University of Basrah during 2018 growing season. Completely randomized blocks design (C.R.B.D.)  was used to investigate the effect of different concentrations of super swing (0, 0.5 and 1) g.l-1 and whey (0, 50 and 75) % and their interactions to enhance the growth parameters and chemical characteristics of Sour orange transplants. The results showed a significant increase in most of the measured growth parameters of transplants treated with high concentration of foliar spraying to both fertilizers. Application of super swing at 1 g.l-1 with whey at 75% together significantly increased the height of plant, the number of leaves, leaf area, the diameter of stem, number of flowers, the leaves content of both nitrogen and potassium, percentage of dry matter, and content of chlorophyll. Whereas, control treatment was significantly increased the water content compared to other treatments. Addition of growth-enhancing compounds such as super swing and whey extract to the plant can improve the metabolic performance and enhances the plant's ability to absorb nutrients from the soil.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jay J. Minuti ◽  
Charlee A. Corra ◽  
Brian S. Helmuth ◽  
Bayden D. Russell

The ability of an organism to alter its physiology in response to environmental conditions offers a short-term defense mechanism in the face of weather extremes resulting from climate change. These often manifest as multiple, interacting drivers, especially pH and temperature. In particular, decreased pH can impose constraints on the biological mechanisms which define thermal limits by throwing off energetic equilibrium and diminishing physiological functions (e.g., in many marine ectotherms). For many species, however, we do not have a detailed understanding of these interactive effects, especially on short-term acclimation responses. Here, we investigated the metabolic plasticity of a tropical subtidal gastropod (Trochus maculatus) to increased levels of CO2 (700 ppm) and heating (+3°C), measuring metabolic performance (Q10 coefficient) and thermal sensitivity [temperature of maximum metabolic rate (TMMR), and upper lethal temperature (ULT)]. Individuals demonstrated metabolic acclimation in response to the stressors, with TMMR increasing by +4.1°C under higher temperatures, +2.7°C under elevated CO2, and +4.4°C under the combined stressors. In contrast, the ULT only increased marginally in response to heating (+0.3°C), but decreased by −2.3°C under CO2, and −8.7°C under combined stressors. Therefore, although phenotypic plasticity is evident with metabolic acclimation, acute lethal temperature limits seem to be less flexible during short-term acclimation.


2000 ◽  
Vol 355 (1401) ◽  
pp. 1215-1218 ◽  
Author(s):  
Mary T. Lucero ◽  
Wei Huang ◽  
Tu Dang

The olfactory organs from the squid Lolliguncula brevis are composed of a pseudostratified epithelium containing five morphological subtypes of chemosensory neurons and ciliated support cells. Physiological recordings have been made from two of the subtypes and only the type 4 neuron has been studied in detail. Odour–stimulated increases in intracellular calcium and rapid activation of an electrogenic Na + /Ca 2+ exchanger current in type 4 neurons suggest that the exchanger proteins are localized very close to the transduction machinery. Electrophysiological studies have shown that olfactory signal transduction takes place in the apical ciliary regions of olfactory neurons. Using polyclonal antiserum against squid Na + /Ca 2+ proteins, we observed specific staining in the ciliary region of cells that resemble type 2, 3, 4 and 5 neurons. Staining was also observed in axon bundles, and in muscle tissue. Collectively, these data support the model that Na + /Ca 2+ exchanger proteins are localized to transduction machinery in cilia of type 4 neurons and suggest that the other olfactory subtypes also use Ca 2+ during chemosensory responses.


Sign in / Sign up

Export Citation Format

Share Document