Impact of aging on gene expression in a rat model of ischemic cutaneous wound healing

2004 ◽  
Vol 118 (2) ◽  
pp. 190-196 ◽  
Author(s):  
Jon E Mogford ◽  
Mark Sisco ◽  
Steve R Bonomo ◽  
Alan M Robinson ◽  
Thomas A Mustoe
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Zizy I. Elbialy ◽  
Ayman Atiba ◽  
Aml Abdelnaby ◽  
Ibrahim I. Al-Hawary ◽  
Ahmed Elsheshtawy ◽  
...  

Abstract Background Collagen is the most abundant structural protein in the mammalian connective tissue and represents approximately 30% of animal protein. The current study evaluated the potential capacity of collagen extract derived from Nile tilapia skin in improving the cutaneous wound healing in rats and investigated the underlying possible mechanisms. A rat model was used, and the experimental design included a control group (CG) and the tilapia collagen treated group (TCG). Full-thickness wounds were conducted on the back of all the rats under general anesthesia, then the tilapia collagen extract was applied topically on the wound area of TCG. Wound areas of the two experimental groups were measured on days 0, 3, 6, 9, 12, and 15 post-wounding. The stages of the wound granulation tissues were detected by histopathologic examination and the expression of vascular endothelial growth factor (VEGF), and transforming growth factor (TGF-ß1) were investigated using immunohistochemistry. Moreover, relative gene expression analysis of transforming growth factor-beta (TGF-ß1), basic fibroblast growth factor (bFGF), and alpha-smooth muscle actin (α-SMA) were quantified by real-time qPCR. Results The histopathological assessment showed noticeable signs of skin healing in TCG compared to CG. Immunohistochemistry results revealed remarkable enhancement in the expression levels of VEGF and TGF-β1 in TCG. Furthermore, TCG exhibited marked upregulation in the VEGF, bFGF, and α-SMA genes expression. These findings suggested that the topical application of Nile tilapia collagen extract can promote the cutaneous wound healing process in rats, which could be attributed to its stimulating effect on recruiting and activating macrophages to produce chemotactic growth factors, fibroblast proliferation, and angiogenesis. Conclusions The collagen extract could, therefore, be a potential biomaterial for cutaneous wound healing therapeutics.


2020 ◽  
Vol 21 (21) ◽  
pp. 7911
Author(s):  
Tomas Komprda ◽  
Zbysek Sladek ◽  
Zuzana Sevcikova ◽  
Veronika Svehlova ◽  
Jan Wijacki ◽  
...  

Dietary supplementation with polyunsaturated fatty acids (PUFA) n-3 can affect cutaneous wound healing; however, recent findings demonstrate the variable extent of their influence on the quality of healing. Here, we compare the effect of several dietary oils, containing different levels of PUFA n-3 and PUFA n-6, on wound healing in the rat model. Rats were fed the feed mixture with 8% palm oil (P), safflower oil (S), fish oil (F) or Schizochytrium microalga extract (Sch) and compared to the animals fed by control feed mixture (C). Dorsal full-thickness cutaneous excisions were performed after 52 days of feeding and skin was left to heal for an additional 12 days. Histopathological analysis of skin wounds was performed, including immune cells immunolabeling and the determination of hydroxyproline amount as well as gene expression analyses of molecules contributing to different steps of the healing. Matrix-assisted-laser-desorption-ionization mass-spectrometry-imaging (MALDI-MSI) was used to determine the amount of collagen α-1(III) chain fragment in healing samples. Treatment by Schizochytrium extract resulted in decrease in the total wound area, in contrast to the safflower oil group where the size of the wound was larger when comparing to control animals. Diet with Schizochytrium extract and safflower oils displayed a tendency to increase the number of new vessels. The number of MPO-positive cells was diminished following any of oil treatment in comparison to the control, but their highest amount was found in animals with a fish oil diet. On the other hand, the number of CD68-positive macrophages was increased, with the most significant enhancement in the fish oil and safflower oil group. Hydroxyproline concentration was the highest in the safflower oil group but it was also enhanced in all other analyzed treatments in comparison to the control. MALDI-MSI signal intensity of a collagen III fragment decreased in the sequence C > S > Sch > P > F treatment. In conclusion, we observed differences in tissue response during healing between dietary oils, with the activation of inflammation observed following the treatment with oil containing high eicosapentaenoic acid (EPA) level (fish oil) and enhanced healing features were induced by the diet with high content of docosahexaenoic acid (DHA, Schizochytrium extract).


2017 ◽  
Vol 31 (6) ◽  
pp. 515-520
Author(s):  
Cihangir Biçer ◽  
Yalcin Yontar ◽  
Günhan Gökahmetoğlu ◽  
Teoman Eskitaşçıoğlu

2001 ◽  
Vol 276 (50) ◽  
pp. 47329-47337 ◽  
Author(s):  
Chih-Chiun Chen ◽  
Fan-E Mo ◽  
Lester F. Lau

Cyr61 is a heparin-binding, extracellular matrix-associated protein of the CCN family, which also includes connective tissue growth factor, Nov, WISP-1, WISP-2, and WISP-3. Cyr61 is capable of multiple functions, including induction of angiogenesisin vivo. Purified Cyr61 mediates cell adhesion and induces adhesive signaling, stimulates cell migration, enhances cell proliferation, and promotes cell survival in both fibroblasts and endothelial cells. In this study, we have used cDNA array hybridization to identify genes regulated by Cyr61 in primary human skin fibroblasts. The Cyr61-regulated genes fall into several groups known to participate in processes important for cutaneous wound healing, including: 1) angiogenesis and lymphogenesis (VEGF-A and VEGF-C); 2) inflammation (interleukin-1β); 3) extracellular matrix remodeling (MMP1, MMP3, TIMP1, uPA, and PAI-1); and 4) cell-matrix interactions (Col1α1, Col1α2, and integrins α3and α5). Cyr61-mediated gene expression requires heparin binding activity of Cyr61, cellularde novotranscription, and protein synthesis and is largely dependent on the activation of p42/p44 MAPKs. Cyr61 regulates gene expression not only in serum-free medium but also in fibroblasts cultured on various matrix proteins or in the presence of 10% serum. These effects of Cyr61 can be sustained for at least 5 days, consistent with the time course of wound healingin vivo. Interestingly, Cyr61 can interact with transforming growth factor-β1 to regulate expression of specific genes in an antagonistic, additive, or synergistic manner. Furthermore, we show that theCyr61gene is highly induced in dermal fibroblasts of granulation tissue during cutaneous wound repair. Together, these results show thatCyr61is inducibly expressed in granulation tissues after wounding and that Cyr61 activates a genetic program for wound repair in skin fibroblasts. We propose a model in which Cyr61 integrates its activities on endothelial cells, fibroblasts, and macrophages to regulate the processes of angiogenesis, inflammation, and matrix remodeling in the context of cutaneous wound healing.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 643-P ◽  
Author(s):  
YANFEI HAN ◽  
LINDONG LI ◽  
YANJUN LIU ◽  
YOU WANG ◽  
CHUNHUA YAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document