Effects of wave breaking on wave statistics for deep-water random wave train

2003 ◽  
Vol 30 (2) ◽  
pp. 205-220 ◽  
Author(s):  
Nobuhito Mori
Author(s):  
Dag Myrhaug

This article presents a simple analytical method giving estimates of wave-driven bottom stresses for very rough and mud seabeds in shallow water from long-term wave statistics in deep water. The results are exemplified using long-term in situ wave statistics from the Northern North Sea and by providing examples representing realistic field conditions. The results can be used to make estimates of the seabed shear stress in estuarine and coastal waters based on, for example, global wave statistics.


2018 ◽  
Vol 74 (2) ◽  
pp. I_1063-I_1068
Author(s):  
Kenya TAKAHASHI ◽  
Yu SOUMA ◽  
Toshimasa ISHII ◽  
Takeshi NISHIHATA ◽  
Takeru MICHIMAE ◽  
...  

2020 ◽  
Vol 12 (21) ◽  
pp. 3618
Author(s):  
Stanislav Ermakov ◽  
Vladimir Dobrokhotov ◽  
Irina Sergievskaya ◽  
Ivan Kapustin

The role of wave breaking in microwave backscattering from the sea surface is a problem of great importance for the development of theories and methods on ocean remote sensing, in particular for oil spill remote sensing. Recently it has been shown that microwave radar return is determined by both Bragg and non-Bragg (non-polarized) scattering mechanisms and some evidence has been given that the latter is associated with wave breaking, in particular, with strong breaking such as spilling or plunging. However, our understanding of mechanisms of the action of strong wave breaking on small-scale wind waves (ripples) and thus on the radar return is still insufficient. In this paper an effect of suppression of radar backscattering after strong wave breaking has been revealed experimentally and has been attributed to the wind ripple suppression due to turbulence generated by strong wave breaking. The experiments were carried out in a wind wave tank where a frequency modulated wave train of intense meter-decimeter-scale surface waves was generated by a mechanical wave maker. The wave train was compressed according to the gravity wave dispersion relation (“dispersive focusing”) into a short-wave packet at a given distance from the wave maker. Strong wave breaking with wave crest overturning (spilling) occurred for one or two highest waves in the packet. Short decimeter-centimeter-scale wind waves were generated at gentle winds, simultaneously with the long breaking waves. A Ka-band scatterometer was used to study microwave backscattering from the surface waves in the tank. The scatterometer looking at the area of wave breaking was mounted over the tank at a height of about 1 m above the mean water level, the incidence angle of the microwave radiation was about 50 degrees. It has been obtained that the radar return in the presence of short wind waves is characterized by the radar Doppler spectrum with a peak roughly centered in the vicinity of Bragg wave frequencies. The radar return was strongly enhanced in a wide frequency range of the radar Doppler spectrum when a packet of long breaking waves arrived at the area irradiated by the radar. After the passage of breaking waves, the radar return strongly dropped and then slowly recovered to the initial level. Measurements of velocities in the upper water layer have confirmed that the attenuation of radar backscattering after wave breaking is due to suppression of short wind waves by turbulence generated in the breaking zone. A physical analysis of the effect has been presented.


2021 ◽  
Author(s):  
Alexander Kandaurov ◽  
Yuliya Troitskaya ◽  
Vasiliy Kazakov ◽  
Daniil Sergeev

<p>Whitecap coverage were retrieved from high-speed video recordings of the water surface obtained on the unique laboratory faculty The Large Thermostratified Test Tank with wind-wave channel (cross-section from 0.7×0.7 to 0.7×0.9 m<sup>2</sup> at the end, 12 m fetch, wind velocity up to 35 m/s, U<sub>10</sub> up to 65 m/s). The wind wave was induced using a wave generator installed at the beginning of the channel (a submerged horizontal plate, frequency 1.042 Hz, amplitude 93 mm) working in a pulsed operation (three periods). Wave breaking was induced in working area by a submerged plate (1.2×0.7 m<sup>2</sup>, up to 12 depth, AOA -11,7°). Experiments were carried out for equivalent wind velocities U<sub>10</sub> from 17.8 to 40.1 m/s. Wire wave gauge was used to control the shape and phase of the incident wave.</p><p>To obtain the surface area occupied by wave breaking, we used two Cygnet CY2MP-CL-SN cameras with 50 mm lenses. The cameras are installed above the channel at a height of 273 cm from the water surface, separated by 89 cm. The image scale was 302 μm/px, the size of the image obtained from each camera is 2048x1088 px<sup>2</sup>, which corresponds to 619x328 mm<sup>2</sup> (the long side of the frame along the channel). The shooting was carried out with a frequency of 50 Hz, an exposure time of 3 ms, 250 frames were recorded for each wave train. To illuminate the image areas to the side of the measurement area, a diffuse screen was placed on the side wall, which was illuminated by powerful LED lamps to create a uniform illumination source covering the entire side wall of the section.</p><p>Using specially developed software for automatic detection of areas of wave breaking, the values of the whitecap coverage area were obtained. Automatic image processing was performed using morphological analysis in combination with manual processing of part of the frames for tweaking the algorithm parameters: for each mode, manual processing of several frames was performed, based on the results of which automatic algorithm parameters were selected to ensure that the resulting whitecap coverage corresponded. Comparison of images obtained from different angles made it possible to detect and exclude areas of glare on the surface from the whitecap coverage.</p><p>The repeatability of the created wave breakings allows carrying out independent measurements for the same conditions, for example the parameters of spray generation will give estimations of the average number of fragmentation events per unit area of the wave breaking area.</p><p>The work was supported by the RFBR grants 21-55-50005 and 20-05-00322 (conducting an experiment), President grant for young scientists МК-5503.2021.1.5 (software development) and the RSF grant No. 19-17-00209 (data processing).</p>


2021 ◽  
Vol 144 (2) ◽  
Author(s):  
Yuzhu Li ◽  
David R. Fuhrman

Abstract Instabilities of deep-water wave trains subject to initially small perturbations (which then grow exponentially) can lead to extreme waves in offshore regions. The present study focuses on the two-dimensional Benjamin–Feir (or modulational) instability and the three-dimensional crescent (or horseshoe) waves, also known as Class I and Class II instabilities, respectively. Numerical studies on Class I and Class II wave instabilities to date have been mostly limited to models founded on potential flow theory; thus, they could only properly investigate the process from initial growth of the perturbations to the initial breaking point. The present study conducts numerical simulations to investigate the generation and development of wave instabilities involving the wave breaking process. A computational fluid dynamics (CFD) model solving Reynolds-averaged Navier–Stokes (RANS) equations coupled with a turbulence closure model in terms of the Reynolds stress model is applied. Wave form evolutions, Fourier amplitudes, and the turbulence beneath the broken waves are investigated.


Author(s):  
Yuxiang Ma ◽  
Guohai Dong ◽  
Xiaozhou Ma

New experimental data for the evolution of deep-water wave packets has been presented. The present experimental data shows that the local maximum steepness for extreme waves is significantly above the criterion of the limiting Stokes waves. The wavelet spectra of the wave groups around the breaking locations indicate that the energy of higher harmonics can be generated quickly before wave breaking and mainly concentrate at the part of the wave fronts. After wave breaking, however, these higher harmonics energy is dissipated immediately. Furthermore, the variations of local peak frequency have also been examined. It is found that frequency downshift increases with the increase of initial steepness and wave packet size.


Author(s):  
Dag Myrhaug

The article addresses how the wave power in shallow water can be estimated based on available wind and wave statistics for a deep water ocean area. The average statistical properties of the wave power in shallow water expressed in terms of the mean value and the standard deviation are presented. Results are exemplified by using long-term wind and wave statistics from the same ocean area in the Northern North Sea. Overall, it appears that there is agreement between the results based on these inputs from wind and wave statistics. The presented analytical method should be useful for making preliminary estimates of the wave power potential in shallow water using either available deep water wind statistics or deep water wave statistics, which enhances the possibilities for assessing further the wave power potential in, for example, near-coastal zones.


Sign in / Sign up

Export Citation Format

Share Document