Equilibrium volumes of body-centered cubic alkali metals related to critical constants

2000 ◽  
Vol 113 (8) ◽  
pp. 479-482 ◽  
Author(s):  
F.E. Leys ◽  
N.H. March ◽  
V.E. Van Doren ◽  
G. Straub
2010 ◽  
Vol 24 (22) ◽  
pp. 4233-4242
Author(s):  
N. MUSHTAQ ◽  
M. Z. BUTT

Temperature dependence of the critical resolved shear stress (CRSS) of 5N pure body-centered cubic (bcc) alkali metals K , Li , and Na has been critically examined within the framework of the Feltham–Butt model of flow stress in crystals with high intrinsic lattice friction. The model is based on the concept of the Peierls mechanism, i.e., the kink-pair mode of escape of screw dislocations trapped in Peierls valleys. It predicts that the square–root of CRSS, τ1/2, varies with the temperature, T, in accord with the relation τ1/2 = A – BT, where A and B are positive constants. Evaluation of the microscopic parameters of the model from the experimental τ – T data shows that the Peierls mechanism on (321) plane is responsible for the initial flow stress in K single crystal at rather low temperatures between 1.5 and 25 K. However, the rate–controlling process of yielding in Li (90–300 K) and Na (50–150 K) single crystals is not Peierls mechanism but stress-assisted, thermally activated, breakaway of edge-dislocation segments from short rows of pinning points due to localized defects, by cooperative unzipping and at the same time expanding in the shape of shallow bulge to the saddle point.


Author(s):  
F. Hensel ◽  
G.F. Hohl ◽  
D. Schaumlöffel ◽  
W.-C. Pilgrim ◽  
Ernst Ulrich Franck

We report new measurements of the densities of the coexisting liquid and vapour phases of the alkali metals K and Na. Comparison of the coexistence curve of K with those of Cs and Rb in reduced form shows that the alkali metals behave very similarly close to the critical temperatures. The experimental values of the critical constants T


Author(s):  
Robert C. Rau ◽  
Robert L. Ladd

Recent studies have shown the presence of voids in several face-centered cubic metals after neutron irradiation at elevated temperatures. These voids were found when the irradiation temperature was above 0.3 Tm where Tm is the absolute melting point, and were ascribed to the agglomeration of lattice vacancies resulting from fast neutron generated displacement cascades. The present paper reports the existence of similar voids in the body-centered cubic metals tungsten and molybdenum.


2020 ◽  
Author(s):  
Ian Colliard ◽  
Gregory Morrosin ◽  
Hans-Conrad zur Loye ◽  
May Nyman

Superatoms are nanometer-sized molecules or particles that can form ordered lattices, mimicking their atomic counterparts. Hierarchical assembly of superatoms gives rise to emergent properties in superlattices of quantum-dots, p-block clusters, and fullerenes. Here, we introduce a family of uranium-oxysulfate cluster anions whose hierarchical assembly in water is controlled by two parameters; acidity and the countercation. In acid, larger Ln<sup>III</sup> (Ln=La-Ho) link hexamer (U<sub>6</sub>) oxoclusters into body-centered cubic frameworks, while smaller Ln<sup>III</sup> (Ln=Er-Lu &Y) promote linking of fourteen U<sub>6</sub>-clusters into hollow superclusters (U<sub>84</sub> superatoms). U<sub>84</sub> assembles into superlattices including cubic-closest packed, body-centered cubic, and interpenetrating networks, bridged by interstitial countercations, and U<sub>6</sub>-clusters. Divalent transition metals (TM=Mn<sup>II </sup>and Zn<sup>II</sup>), with no added acid, charge-balance and promote the fusion of 10 U<sub>6</sub> and 10 U-monomers into a wheel–shaped cluster (U<sub>70</sub>). Dissolution of U<sub>70</sub> in organic media reveals (by small-angle Xray scattering) that differing supramolecular assemblies are accessed, controlled by TM-linking of U<sub>70</sub>-clusters. <br>


2020 ◽  
Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub> to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO<sub>2</sub> and the MGE. Herein we report the first successful chemical reduction of CO<sub>2</sub> at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO<sub>2</sub> adduct (<b>1</b>) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO<sub>2</sub>)]<sub>n</sub>(M = Li, Na, K, <b> 2</b>-<b>4</b>) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M<sub>2</sub>(CAAC–CO<sub>2</sub>)]<sub>n </sub>(<b>5</b>-<b>8</b>). It is notable that these crystalline clusters of reduced CO<sub>2</sub> may also be isolated via the “one-pot” reaction of free CO<sub>2</sub> with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products <b>2</b>-<b>8</b> were investigated using a combination of experimental and theoretical methods.<br>


Sign in / Sign up

Export Citation Format

Share Document