Use of rotary shadowing electron microscopy to investigate the collagen fibrils in the extracellular matrix of cuttle-fish (Sepia officinalis) and chicken cartilage

1998 ◽  
Vol 30 (1) ◽  
pp. 112-117 ◽  
Author(s):  
C. Rigo ◽  
A. Bairati
Author(s):  
Lee F. Ellis ◽  
Richard M. Van Frank ◽  
Walter J. Kleinschmidt

The extract from Penicillum stoliniferum, known as statolon, has been purified by density gradient centrifugation. These centrifuge fractions contained virus particles that are an interferon inducer in mice or in tissue culture. Highly purified preparations of these particles are difficult to enumerate by electron microscopy because of aggregation. Therefore a study of staining methods was undertaken.


1997 ◽  
Vol 10 (01) ◽  
pp. 6-11 ◽  
Author(s):  
R. F. Rosenbusch ◽  
L. C. Booth ◽  
L. A. Dahlgren

SummaryEquine tendon fibroblasts were isolated from explants of superficial digital flexor tendon, subcultured and maintained in monolayers. The cells were characterized by light microscopy, electron microscopy and radiolabel studies for proteoglycan production. Two predominant cell morphologies were identified. The cells dedifferentiated toward a more spindle shape with repeated subcultures. Equine tendon fibroblasts were successfully cryopreserved and subsequently subcultured. The ability to produce proteoglycan was preserved.The isolated cells were identified as fibroblasts, based on their characteristic shape by light microscopy and ultrastructure and the active production of extracellular matrix proteins. Abundant rough endoplasmic reticulum and the production of extracellular matrix products demonstrated active protein production and export. Proteoglycans were measurable via liquid scintillation counting in both the cell-associated fraction and free in the supernatant. This model is currently being utilized to study the effects of polysulfated glycosaminoglycan on tendon healing. Future uses include studying the effects of other pharmaceuticals, such as hyaluronic acid, on tendon healing.A model was developed for in vitro investigations into tendon healing. Fibroblasts were isolated from equine superficial digital flexor tendons and maintained in monolayer culture. The tenocytes were characterized via light and electron microscopy. Proteoglycan production was measured, using radio-label techniques. The fibroblasts were cryopreserved and subsequently subcultured. The cells maintained their capacity for proteoglycan production, following repeated subculturing and cryopreservation.


1994 ◽  
Vol 72 (01) ◽  
pp. 140-145 ◽  
Author(s):  
Valeri Kolpakov ◽  
Maria Cristina D'Adamo ◽  
Lorena Salvatore ◽  
Concetta Amore ◽  
Alexander Mironov ◽  
...  

SummaryActivated neutrophils may promote thrombus formation by releasing proteases which may activate platelets, impair the fibrinolytic balance and injure the endothelial monolayer.We have investigated the morphological correlates of damage induced by activated neutrophils on the vascular wall, in particular the vascular injury induced by released cathepsin G in both static and dynamic conditions.Human umbilical vein endothelial cells were studied both in a cell culture system and in a model of perfused umbilical veins. At scanning electron microscopy, progressive alterations of the cell monolayer resulted in cell contraction, disruption of the intercellular contacts, formation of gaps and cell detachment.Contraction was associated with shape change of the endothelial cells, that appeared star-like, while the underlying extracellular matrix, a potentially thrombogenic surface, was exposed. Comparable cellular response was observed in an “in vivo” model of perfused rat arterial segment. Interestingly, cathepsin G was active at lower concentrations in perfused vessels than in culture systems. Restoration of blood flow in the arterial segment previously damaged by cathepsin G caused adhesion and spreading of platelets on the surface of the exposed extracellular matrix. The subsequent deposition of a fibrin network among adherent platelets, could be at least partially ascribed to the inhibition by cathepsin G of the vascular fibrinolytic potential.This study supports the suggestion that the release of cathepsin G by activated neutrophils, f.i. during inflammation, may contribute to thrombus formation by inducing extensive vascular damage.


1990 ◽  
Vol 265 (15) ◽  
pp. 8823-8832 ◽  
Author(s):  
D Schuppan ◽  
M C Cantaluppi ◽  
J Becker ◽  
A Veit ◽  
T Bunte ◽  
...  

1974 ◽  
Vol 60 (1) ◽  
pp. 92-127 ◽  
Author(s):  
Melvyn Weinstock ◽  
C. P. Leblond

The elaboration of dentin collagen precursors by the odontoblasts in the incisor teeth of 30–40-g rats was investigated by electron microscopy, histochemistry, and radioautography after intravenous injection of tritium-labeled proline. At 2 min after injection, when the labeling of blood proline was high, radioactivity was restricted to the rough endoplasmic reticulum, indicating that it is the site of synthesis of the polypeptide precursors of collagen, the pro-alpha chains. At 10 min, when the labeling of blood proline had already declined, radioactivity was observed in spherical portions of Golgi saccules containing entangled threads, and, at 20 min, radioactivity appeared in cylindrical portions containing aggregates of parallel threads. The parallel threads measured 280–350 nm in length and stained with the low pH-phosphotungstic acid technique for carbohydrate and with the silver methenamine technique for aldehydes (as did extracellular collagen fibrils). The passage of label from spherical to cylindrical Golgi portions is associated with the reorganization of entangled into parallel threads, which is interpreted as the packing of procollagen molecules. Between 20 and 30 min, prosecretory and secretory granules respectively became labeled. These results indicate that the cylindrical portions of Golgi saccules transform into prosecretory and subsequently into secretory granules. Within these granules, the parallel threads, believed to be procollagen molecules, are transported to the odontoblast process. At 90 min and 4 h after injection, label was present in predentin, indicating that the labeled content of secretory granules had been released into predentin. This occurred by exocytosis as evidenced by the presence of secretory granules in fusion with the plasmalemma of the odontoblast process. It is proposed that pro-alpha chains give rise to procollagen molecules which assemble into parallel aggregates in the Golgi apparatus. Procollagen molecules are then transported within secretory granules to the odontoblast process and released by exocytosis. In predentin procollagen molecules would give rise to tropocollagen molecules, which would then polymerize into collagen fibrils.


Observations by electron microscopy on thin sections of the metatarsal tendon of embryonic fowls show that in the 8-day embryo the earliest definable collagen fibrils of 80 Å in diameter are intimately associated with the cytoplasm of the compact, apparently syncytial, cells of which the tendon rudiment is composed. As development proceeds, some intracytoplasmic groups of fibrils are distinguishable, but intercellular spaces also develop and these gradually become filled with fibrils; finally, bundles are formed and lie packed between the adjacent cells. Soon the extracellular organization predominates until at 20days the average diameter of the fibrils is 400 Å and the normal 640 Å periodicity of collagen has been achieved. The morphological features demonstrated have been correlated with histochemical data, and the possible function of the various cellular components in the formation of the intercellular substance has been discussed. By the use of sections in which fibrils have been cut exactly transverse to the bundle axis it has been shown that each fibril is invested by interfibrillar material. As the diameter of the fibrils increases with age the relative volume of interfibrillar material within a bundle diminishes; it is therefore concluded that this material must contain either collagen or the necessary precursors in order to account for the enlargement of the fibrils. Thus the interfibrillar material is of fundamental importance to the formation and growth of the collagen fibrils.


1987 ◽  
Vol 66 (12) ◽  
pp. 1708-1712 ◽  
Author(s):  
W. Beertsen

This study was undertaken in order to determine whether hypofunction of teeth is associated with changes in collagen phagocytosis by fibroblasts of the periodontal ligament. In mice, the lower right molars were extracted and the animals killed one, two, three, four, or seven days later. The maxillary first molars with their surrounding periodontium were processed for electron microscopy and their periodontal ligament subjected to morphometric analysis. It was observed that, whereas the volume density of extracellular collagen in the ligament of the hypofunctional molars decreased from 50% to 30% during the course of the experiment the fraction of fibrillar collagen ingested by the cells increased over two-fold. This increase was already manifest very shortly after the onset of the experiment and offers an explanation for the net loss of collagen fibrils from the extracellular space.


1992 ◽  
Vol 29 (3) ◽  
pp. 230-238 ◽  
Author(s):  
J. E. Burkhardt ◽  
M. A. Hill ◽  
J. J. Turek ◽  
W. W. Carlton

The ultrastructural features of quinolone-induced arthropathy were studied in' the humeral and femoral heads of nine skeletally immature Beagle dogs (3 months old) that were dosed orally with difloxacin at 300 mg/kg body weight and euthanatized 24, 36, or 48 hours later in groups of three. Three age-matched dogs were given a placebo and euthanatized after 48 hours. Mitochondria in chondrocytes had significantly greater cross-sectional areas ( P < 0.05) in electron micrographs from dogs euthanatized after 48 hours of treatment than did those in other groups. There was also a significantly greater percentage of chondrocytes with swollen mitochondria in treated dogs than in the controls ( P < 0.05). These changes preceded the necrosis observed in some chondrocytes in the dogs of the 48-hour group. Disruption of extracellular matrix was first observed in the pericellular matrix of necrotic chondrocytes, indicating that this change was secondary to the changes in chondrocytes. Fissures within cartilages apparently resulted from the loss of the normal association of proteoglycans with collagen fibrils.


Sign in / Sign up

Export Citation Format

Share Document