Protective effects of labetalol on myocardial contractile function in brain-dead pigs

1998 ◽  
Vol 30 (6) ◽  
pp. 2842-2843 ◽  
Author(s):  
E.M Siaghy ◽  
P Halejcio-Delophont ◽  
Y Devaux ◽  
J.P Richoux ◽  
J.P Villemot ◽  
...  
1996 ◽  
Vol 270 (5) ◽  
pp. R955-R962
Author(s):  
C. D. Mazer ◽  
B. Naser ◽  
K. S. Kamel

We examined the impact of alkali therapy on myocardial contractility in a model of myocardial ischemia in dogs using direct measurements of myocardial contractile function. Myocardial ischemia in the left anterior descending (LAD) artery territory was induced using a perfusion circuit from the internal carotid artery to the LAD artery. Myocardial contractile function was assessed using sonomicrometry for measurement of percent systolic shortening (%SS), preload recruitable stroke work (PRSW) slope, and end-systolic pressure-length relationship (ESPLR) area. Because the blood flow in LAD artery was diminished by approximately 70%, there was a significant decrease in O2 delivery and uptake by the ischemic myocardium. Ischemia led to a significant fall in LAD regional contractile function with %SS decreasing from 15 +/- 2 to 7 +/- 2%, PRSW slope from 82 +/- 10 to 37 +/- 5 mmHg, and ESPLR area from 121 +/- 2 to 48 +/- 14 mmHg.mm (P < 0.05). In six dogs, the intracoronary administration of NaHCO(3) resulted in a significant increase in pH in LAD arterial and venous blood. There was, however, no significant increase in %SS (6 +/- 2), PRSW slope (43 +/- 10 mmHg), or ESPLR area (60 +/- 13 mmHg.mm). Since administration of NaHCO(3) resulted in a significant increase in PCO2 in LAD arterial and venous blood, similar experiments were carried out in five dogs, but with the intracoronary infusion of the amine buffer THAM [tris(hydroxymethyl)aminomethane (Tris) buffer; 2-amino-2-hydroxyl-1,3-propandiol] instead of NaHCO3. Although administration of THAM resulted in a significant increase in pH and a significant decrease in PCO2, in both LAD arterial and venous blood, there was no significant improvement in any of the parameters used to assess myocardial contractile function. In conclusion, administration of alkali (NaHCO3 or THAM) does not enhance the contractile function of the ischemic myocardium.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e45365 ◽  
Author(s):  
Dhwajbahadur K. Rawat ◽  
Peter Hecker ◽  
Makino Watanabe ◽  
Sukrutha Chettimada ◽  
Richard J. Levy ◽  
...  

2007 ◽  
Vol 103 (2) ◽  
pp. 511-517 ◽  
Author(s):  
Patricia A. Gwirtz ◽  
Jerry Dickey ◽  
David Vick ◽  
Maurice A. Williams ◽  
Brian Foresman

Studies tested the hypothesis that myocardial ischemia induces increased paraspinal muscular tone localized to the T2–T5 region that can be detected by palpatory means. This is consistent with theories of manual medicine suggesting that disturbances in visceral organ physiology can cause increases in skeletal muscle tone in specific muscle groups. Clinical studies in manual and traditional medicine suggest this phenomenon occurs during episodes of myocardial ischemia and may have diagnostic potential. However, there is little direct evidence of a cardiac-somatic mechanism to explain these findings. Chronically instrumented dogs [12 neurally intact and 3 following selective left ventricular (LV) sympathectomy] were examined before, during, and after myocardial ischemia. Circumflex blood flow (CBF), left ventricular contractile function, electromyographic (EMG) analysis, and blinded manual palpatory assessments (MPA) of tissue over the transverse spinal processes at segments T2–T5 and T11–T12 (control) were performed. Myocardial ischemia was associated with a decrease in myocardial contractile function and an increase in heart rate. MPA revealed increases in muscle tension and texture/firmness during ischemia in the T2–T5 segments on the left, but not on the right or in control segments. EMG demonstrated increased amplitude for the T4–T5 segments. After LV sympathectomy, MPA and EMG evidence of increased muscle tone were absent. In conclusion, myocardial ischemia is associated with significant increased paraspinal muscle tone localized to the left side T4–T5 myotomes in neurally intact dogs. LV sympathectomy eliminates the somatic response, suggesting that sympathetic neural traffic between the heart and somatic musculature may function as the mechanism for the interaction.


2018 ◽  
Vol 7 (2) ◽  
pp. 121-128 ◽  
Author(s):  
G. V. Lisachenko ◽  
A. V. Budaev ◽  
S. V. Bannih

Aim. To assess myocardial contractile function in dogs after clinical death following acute myocardial infarction and to determine its role in the development of hemodynamic derangements after cardiopulmonary resuscitation. Methods. 180 dogs included in the experiment received pentobarbital anesthesia to assess contractile function and systemic hemodynamics after a 5-min clinical death caused by myocardial infarction. Results Dogs had phase changes in the myocardial contractile function with its initial increase, subsequent depression and normalization in the early postresuscitation period after myocardial infarction. Depressed cardiac contractile function was accompanied by a decrease in the myocardial functional reserve. A similar tendency was found in the restoration of systemic hemocirculation. Conclusion. Similar phase alterations in the myocardial contractile function and systemic hemodynamics developed in the postresuscitation period of acute myocardial infarction. Immediately after recovery, the parameters of systemic hemoperfusion increased due to the activation of the cardiac contractile function. The subsequent initial (3 – 60 min) decrease in the volumetric perfusion parameters was mainly caused by the depressed cardiac contractile function. Rhythm disturbances affected on-going circulatory insufficiency 4 - 5 hours after the recovery. The subsequent progressive decrease in the volumetric perfusion was caused by the extracardiac factors.


1985 ◽  
Vol 66 (4) ◽  
pp. 308-308
Author(s):  
S. A. Obydennov ◽  
A. A. Agafonov ◽  
V. A. Kuznetsov ◽  
F. G. Bikkineev

The aim of this work was to study the effect of various methods of surgical treatment of strangulated intestinal obstruction on the contractile function of the myocardium.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_4) ◽  
Author(s):  
Xiangdong Zhu ◽  
Jing Li ◽  
Huashan Wang ◽  
Filip Gasior ◽  
Chunpei Lee ◽  
...  

Introduction: We have recently shown that pharmacologic inhibition of PTEN significantly increases cardiac arrest survival in a mouse model, however, this protection required pretreatment 30 min prior to the arrest. To improve the onset of PTEN inhibition during cardiac arrest treatment, we have designed a TAT fused cell-permeable peptide (TAT-PTEN9c) for rapid tissue delivery and protection. Hypothesis: We hypothesized that TAT-PTEN9c interferes with the endogenous PTEN binding to its regulatory proteins, resulting in reduced PTEN activity, improved mouse survival and cardiac functional recovery. The improved survival is in part due to enhanced glycolysis and reduced shunting to polyol pathway and osmotic injury in heart and brain. Methods: TAT-PTEN9c (7.5 mg/kg) was given intravenously after CA in mouse to determine protective effects of the treatment on survival and heart function. Western blot was used to determine the efficacy of TAT-PTEN9c for enhancing Akt and PDH E1α activity. The effect of TAT-PTEN9c on sorbitol accumulation in tissues was measured by spectrophotometer using NAD as substrate. Direct effect of TAT-PTEN9c treatment on cardiac function were also measured in Langendorff model of isolated rat heart. Results: In the mouse model of cardiac arrest, survival was significantly increased in the TAT-PTEN9c treated group compared to saline controls at 4 h after CPR. The treated mice had increased Akt phosphorylation and pyruvate dehydrogenase dephosphorylation at R30 min in heart tissues with significantly decreased sorbitol content and reduced release of taurine and glutamate into blood, suggesting improved metabolic recovery and glucose utilization. For the isolated heart model, RPP was reduced by 25% for non-treatment groups following arrest. With TAT-PTEN9c treatment, cardiac contractile function was completely recovered. TAT-PTEN9c significantly increased lactate production at 20 min of reperfusion, indicating increased glycolysis. Conclusion: TAT-PTEN9c enhances Akt and pyruvate dehydrogenase activity and decrease glucose shunting to the polyol pathway in critical organs, preventing osmotic injury and early cardiovascular collapse and death.


Sign in / Sign up

Export Citation Format

Share Document