The measurement of low gas pressures in terms of ion currents

Vacuum ◽  
1970 ◽  
Vol 20 (2) ◽  
pp. 56-64 ◽  
Author(s):  
K Close ◽  
J Yarwood
Keyword(s):  
2021 ◽  
pp. 82-84
Author(s):  
O.O. Ivashchuk ◽  
A.V. Shchagin ◽  
A.S. Kubankin ◽  
E.V. Bolotov ◽  
V.S. Miroshnik ◽  
...  

The article is devoted to investigation of ion generation by tungsten filament in vacuum. Electron and ion currents from tungsten filament at different residual air gas pressures are measured and compared. Dependencies of ion and electron currents from tungsten filament on its supply voltage are measured. Production of ions in the vicinity of the filament is discussed. Prospects of tungsten filament’s application in pyroelectric and piezoelectric pulsed accelerators are discussed.


Author(s):  
Klaus-Ruediger Peters

Only recently it became possible to expand scanning electron microscopy to low vacuum and atmospheric pressure through the introduction of several new technologies. In principle, only the specimen is provided with a controlled gaseous environment while the optical microscope column is kept at high vacuum. In the specimen chamber, the gas can generate new interactions with i) the probe electrons, ii) the specimen surface, and iii) the specimen-specific signal electrons. The results of these interactions yield new information about specimen surfaces not accessible to conventional high vacuum SEM. Several microscope types are available differing from each other by the maximum available gas pressure and the types of signals which can be used for investigation of specimen properties.Electrical non-conductors can be easily imaged despite charge accumulations at and beneath their surface. At high gas pressures between 10-2 and 2 torr, gas molecules are ionized in the electrical field between the specimen surface and the surrounding microscope parts through signal electrons and, to a certain extent, probe electrons. The gas provides a stable ion flux for a surface charge equalization if sufficient gas ions are provided.


Author(s):  
C. Rue ◽  
S. Herschbein ◽  
C. Scrudato ◽  
L. Fischer ◽  
A. Shore

Abstract The efficiency of Gas-Assisted Etching (GAE) and depositions performed using the Focused Ion Beam (FIB) technique is subject to numerous factors. Besides the wellknown primary parameters recommended by the FIB manufacturer (pixel spacing, dwell time, and gas pressures), certain secondary factors can also have a pronounced effect on the quality of these gas-assisted FIB operations. The position of the gas delivery nozzle during XeF2 mills on silicon is examined and was found to affect both the milling speed and the texture on the floor of the FIB trench. Limitations arising from the memory capacity of the FIB computer can also influence process times and trench quality. Exposing the FIB vacuum chamber to TMCTS during SiO2 depositions is found to temporarily impede the performance of subsequent tungsten depositions, especially following heavy or prolonged TMCTS exposure. A delay period may be required to achieve optimal tungsten depositions following TMCTS use. Finally, the focusing conditions of the ion beam are found to have a significant impact on the resistance of FIB-deposited metal films. This effect is attributed to partial milling of the deposition film due to the intense current density of the collimated ion beam. The resistances of metal depositions performed with intentionally defocused ion beams were found to be lower than those performed with focused beams.


1994 ◽  
Vol 141 (3) ◽  
Author(s):  
T.E. DeCoursey ◽  
V.V. Cherny
Keyword(s):  

2021 ◽  
Vol 14 (8) ◽  
pp. 748
Author(s):  
Péter P. Nánási ◽  
Balázs Horváth ◽  
Fábián Tar ◽  
János Almássy ◽  
Norbert Szentandrássy ◽  
...  

Due to the limited availability of healthy human ventricular tissues, the most suitable animal model has to be applied for electrophysiological and pharmacological studies. This can be best identified by studying the properties of ion currents shaping the action potential in the frequently used laboratory animals, such as dogs, rabbits, guinea pigs, or rats, and comparing them to those of human cardiomyocytes. The authors of this article with the experience of three decades of electrophysiological studies, performed in mammalian and human ventricular tissues and isolated cardiomyocytes, summarize their results obtained regarding the major canine and human cardiac ion currents. Accordingly, L-type Ca2+ current (ICa), late Na+ current (INa-late), rapid and slow components of the delayed rectifier K+ current (IKr and IKs, respectively), inward rectifier K+ current (IK1), transient outward K+ current (Ito1), and Na+/Ca2+ exchange current (INCX) were characterized and compared. Importantly, many of these measurements were performed using the action potential voltage clamp technique allowing for visualization of the actual current profiles flowing during the ventricular action potential. Densities and shapes of these ion currents, as well as the action potential configuration, were similar in human and canine ventricular cells, except for the density of IK1 and the recovery kinetics of Ito. IK1 displayed a largely four-fold larger density in canine than human myocytes, and Ito recovery from inactivation displayed a somewhat different time course in the two species. On the basis of these results, it is concluded that canine ventricular cells represent a reasonably good model for human myocytes for electrophysiological studies, however, it must be borne in mind that due to their stronger IK1, the repolarization reserve is more pronounced in canine cells, and moderate differences in the frequency-dependent repolarization patterns can also be anticipated.


1979 ◽  
Vol 57 (5) ◽  
pp. 385-388 ◽  
Author(s):  
R. D. Latimer ◽  
G. Laszlo

1. The left lower lobe of the lungs of six anaesthetized dogs were isolated by the introduction of a bronchial cannula at thoracotomy. Catheters were introduced into the main pulmonary artery and a vein draining the isolated lobe. 2. Blood-gas pressures and pH were measured across the isolated lobe and compared with gas pressures in alveolar samples from the lobe. 3. When the isolated lobe was allowed to reach gaseous equilibrium with pulmonary arterial blood for 30 min, there was no significant difference between alveolar and pulmonary venous Pco2. Mean values of whole-blood base excess were similar in pulmonary arterial and pulmonary venous blood. 4. After injection of 20 ml of 8·4% sodium bicarbonate solution into a peripheral vein, Pco2, pH and plasma bicarbonate concentrations rose in the mixed venous blood. There was no change of whole-blood base excess across the lung, indicating that HCO−3, as distinct from dissolved CO2, did not enter lung tissue in measurable amounts. 5. No systematic alveolar—pulmonary venous Pco2 differences were demonstrated in this preparation other than those explicable by maldistribution of lobar blood flow.


1960 ◽  
Vol 38 (11) ◽  
pp. 2196-2202 ◽  
Author(s):  
N. A. Warner ◽  
T. R. Ingraham

The gas pressures over samples of anhydrous ferric sulphate and anhydrous aluminum sulphate have been measured in a static system, using a mercury manometer in which the exposed surface was covered with a flexible Pyrex bellows. The calculated ΔH for the decomposition of Fe2(SO4)3 was +135.4 kcal/mole. It was not possible to calculate the ΔH for the Al2(SO4)3 decomposition, because a discrete aluminum oxide with singular thermodynamic properties was not obtained.In the Fe2(SO4)3 system, the fraction of SO3 in the gas phase was found to be almost constant over the range of temperature and pressure changes used in the study.At any given temperature, the decomposition pressure over a ferric sulphate sample is greater than that over an aluminum sulphate sample, thus indicating that preferential decomposition of ferric sulphate should be thermodynamically feasible in mixtures of ferric sulphate and aluminum sulphate.


1976 ◽  
Vol 54 (7) ◽  
pp. 748-752 ◽  
Author(s):  
B. Niewitecka ◽  
L. Krause

The disorientation of 62P1/2 cesium atoms, induced in collisions with noble gas atoms in their ground states, was systematically investigated by monitoring the depolarization of cesium resonance fluorescence in relation to noble gas pressures. The Cs atoms, contained together with a buffer gas in a fluorescence cell and located in zero magnetic field, were excited and oriented by irradiation with circularly polarized 8943 Å resonance radiation, and the resonance fluorescence, emitted in an approximately backward direction, was analyzed with respect to circular polarization. The experiments yielded the following disorientation cross sections which have been corrected for the effects of nuclear spin: Cs–He: 4.9 ± 0.7 Å2; Cs–Ne: 2.1 ± 0.3 Å2; Cs–Ar: 5.6 ± 0.8 Å2; Cs–Kr: 5.8 ± 0.9 Å2; Cs–Xe: 6.3 ± 0.9 Å2. The results are in good agreement with most of the available zero-field and low-field data.


Sign in / Sign up

Export Citation Format

Share Document