scholarly journals High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays

2001 ◽  
Vol 41 (10-11) ◽  
pp. 1261-1275 ◽  
Author(s):  
Richard A Normann ◽  
David J Warren ◽  
Josef Ammermuller ◽  
Eduardo Fernandez ◽  
Shane Guillory
Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 62
Author(s):  
Alberto Alfonso-Torreño ◽  
Álvaro Gómez-Gutiérrez ◽  
Susanne Schnabel

Gullies are sources and reservoirs of sediments and perform as efficient transfers of runoff and sediments. In recent years, several techniques and technologies emerged to facilitate monitoring of gully dynamics at unprecedented spatial and temporal resolutions. Here we present a detailed study of a valley-bottom gully in a Mediterranean rangeland with a savannah-like vegetation cover that was partially restored in 2017. Restoration activities included check dams (gabion weirs and fascines) and livestock exclosure by fencing. The specific objectives of this work were: (1) to analyze the effectiveness of the restoration activities, (2) to study erosion and deposition dynamics before and after the restoration activities using high-resolution digital elevation models (DEMs), (3) to examine the role of micro-morphology on the observed topographic changes, and (4) to compare the current and recent channel dynamics with previous studies conducted in the same study area through different methods and spatio-temporal scales, quantifying medium-term changes. Topographic changes were estimated using multi-temporal, high-resolution DEMs produced using structure-from-motion (SfM) photogrammetry and aerial images acquired by a fixed-wing unmanned aerial vehicle (UAV). The performance of the restoration activities was satisfactory to control gully erosion. Check dams were effective favoring sediment deposition and reducing lateral bank erosion. Livestock exclosure promoted the stabilization of bank headcuts. The implemented restoration measures increased notably sediment deposition.


2018 ◽  
Vol 12 (3) ◽  
pp. 532-542 ◽  
Author(s):  
Gian Nicola Angotzi ◽  
Mario Malerba ◽  
Fabio Boi ◽  
Ermanno Miele ◽  
Alessandro Maccione ◽  
...  

2021 ◽  
Vol 13 (19) ◽  
pp. 3870
Author(s):  
Hilma S. Nghiyalwa ◽  
Marcel Urban ◽  
Jussi Baade ◽  
Izak P. J. Smit ◽  
Abel Ramoelo ◽  
...  

Reliable estimates of savanna vegetation constituents (i.e., woody and herbaceous vegetation) are essential as they are both responders and drivers of global change. The savanna is a highly heterogenous biome with high variability in land cover types while also being very dynamic at both temporal and spatial scales. To understand the spatial-temporal dynamics of savannas, using Earth Observation (EO) data for mixed-pixel analysis is crucial. Mixed pixel analysis provides detailed land cover data at a sub-pixel level which are essential for conservation purposes, understanding food supply for herbivores, quantifying environmental change, such as bush encroachment, and fuel availability essential for understanding fire dynamics, and for accurate estimation of savanna biomass. This review paper consulted 197 studies employing mixed-pixel analysis in savanna ecosystems. The review indicates that studies have so far attempted to resolve the savanna mixed-pixel issues by using mainly coarse resolution data, such as Terra-Aqua MODIS and AVHRR and medium resolution Landsat, to provide fractional cover data. Hence, there is a lack of spatio-temporal mixed-pixel analysis for savannas at high spatial resolutions. Methods used for mixed-pixel analysis include parametric and non-parametric methods which range from pixel-unmixing models, such as linear spectral mixture analysis (SMA), time series decomposition, empirical methods to link the green vegetation parameters with Vegetation Indices (VIs), and machine learning methods, such as regression trees (RT) and random forests (RF). Most studies were undertaken at local and regional scale, highlighting a research gap for savanna mixed pixel studies at national, continental, and global level. Parametric methods for modeling spatio-temporal mixed pixel analysis were preferred for coarse to medium resolution remote sensing data, while non-parametric methods were preferred for very high to high spatial resolution data. The review indicates a gap for long time series spatio-temporal mixed-pixel analysis of savannas using high resolution data at various scales. There is potential to harmonize the available low resolution EO data with new high-resolution sensors to provide long time series of the savanna mixed pixel, which, according to this review, is missing.


Sign in / Sign up

Export Citation Format

Share Document