Use of random amplification to develop a PCR detection method for the causative agent of fish pasteurellosis, Photobacterium damselae subsp. piscicida (Vibrionaceae)

Aquaculture ◽  
2002 ◽  
Vol 207 (3-4) ◽  
pp. 187-202 ◽  
Author(s):  
L Dalla Valle ◽  
L Zanella ◽  
P Belvedere ◽  
L Colombo
2013 ◽  
Vol 18 (3) ◽  
pp. 661-666
Author(s):  
Min ZHANG ◽  
Xiangmei LIN ◽  
Yuin JIANG

1999 ◽  
Vol 65 (7) ◽  
pp. 2942-2946 ◽  
Author(s):  
Carlos R. Osorio ◽  
Matthew D. Collins ◽  
Alicia E. Toranzo ◽  
Juan L. Barja ◽  
Jesús L. Romalde

ABSTRACT The causative agent of fish pasteurellosis, the organism formerly known as Pasteurella piscicida, has been reclassified asPhotobacterium damselae subsp. piscicida on the basis of 16S rRNA gene sequence comparisons and chromosomal DNA-DNA hybridization data; thus, this organism belongs to the same species asPhotobacterium damselae subsp. damselae(formerly Vibrio damselae). Since reassignment of P. damselae subsp. piscicida was based on only two strains, one objective of the present work was to confirm the taxonomic position of this fish pathogen by sequencing the 16S rRNA genes of 26 strains having different geographic and host origins. In addition, a nested PCR protocol for detection of P. damselae based on 16S rRNA was developed. This PCR protocol was validated by testing 35 target and 24 nontarget pure cultures, and the detection limits obtained ranged from 1 pg to 10 fg of DNA (200 to 20 cells). A similar level of sensitivity was observed when the PCR protocol was applied to fish tissues spiked with bacteria. The PCR approach described in this paper allows detection of the pathogen in mixed plate cultures obtained from asymptomatic fish suspected to be carriers of P. damselae subsp. piscicida, in which growth of this bacterium cannot be visualized. Our results indicate that the selective primers which we designed represent a powerful tool for sensitive and specific detection of fish pasteurellosis.


2018 ◽  
Vol 100 (1) ◽  
pp. 67-73
Author(s):  
Jong-Won Park ◽  
Madhurababu Kunta ◽  
Greg McCollum ◽  
Marissa Gonzalez ◽  
Pallavi Vedasharan ◽  
...  

2006 ◽  
Vol 42 (4) ◽  
pp. 386-391 ◽  
Author(s):  
D. Al-Ajmi ◽  
J. Padmanabha ◽  
S.E. Denman ◽  
R.A. Gilbert ◽  
R.A.M. Al Jassim ◽  
...  

2014 ◽  
Vol 60 (2) ◽  
pp. 174-180 ◽  
Author(s):  
A.L. Ingebritson ◽  
C.P. Gibbs ◽  
C. Tong ◽  
G.B. Srinivas

2017 ◽  
Vol 100 (2) ◽  
pp. 961-969 ◽  
Author(s):  
Qiming Chen ◽  
Yuanhong Li ◽  
Tingting Tao ◽  
Xiaomei Bie ◽  
Fengxia Lu ◽  
...  

2021 ◽  
Author(s):  
Xi He ◽  
Derong Zhou ◽  
Yanwu Sun ◽  
Yuan Zhang ◽  
Xiaogang Zhang ◽  
...  

Abstract Background Toxoplasma gondii, an intracellular apicomplexan protozoan parasite, can infect all warm-blooded animals. Infected swine are considered one of the most important sources of T. gondii infection in humans. Rapidly and effectively diagnosing T. gondii infection in swine is essential. PCR-based diagnostic tests have been fully developed, and very sensitive and specific PCR is crucial for the diagnosis of swine toxoplasmosis. Methods To established a high specificity and sensitivity PCR detection method for swine toxoplasmosis, we used T. gondii GRA14 gene as target to design specific primers and established a PCR detection method for swine toxoplasmosis. A total of 5462 blood specimens collected from pigs in 5 provinces and autonomous regions in southern China during 2016–2017 were assessed by the newly established GRA14 gene PCR method. Result Altogether, we used T. gondii GRA14 gene as target to design specific primers and established a high specificity and sensitivity PCR detection method for swine toxoplasmosis; in particular, this PCR method could detect T. gondii tachyzoite DNA in the acute infection phase. The GRA14 gene PCR assay detected a minimum of 2.35 tachyzoites of T. gondii, and it could be used for T. gondii detection in blood, tissue, semen, urine and waste feed specimens. The overall T. gondii infection rate was 18.9% (1033/5462) by the newly established GRA14 gene PCR method. According to statistical analysis among different regions, the positive rates of swine toxoplasmosis in the Shaanxi, Fujian and Guangdong areas in China from 2016 to 2017 were the highest, at 31.7% (44/139), 21.9% (86/391) and 18.8% (874/4645), respectively (χ2 = 84.2, P < 0.0001). Specimens collected in 2017 had a higher positive rate (19.1% or 886/4639) than those collected in 2016 (16.1% or 155/963) (χ2 = 4.5, P < 0.05). Specimens collected in autumn (39.4% or 187/474), spring (22.8% or 670/2940) and winter (18.2% or 129/709) also had higher positive rates than those collected in summer (3.8% or 57/1479) (χ2 = 427.7, P < 0.0001). Conclusions These results indicate that the new PCR method based on the T. gondii GRA14 gene would be useful for the diagnosis of swine toxoplasmosis and that it would facilitate the diagnosis of toxoplasmosis in clinical laboratories.


2020 ◽  
Vol 127 (6) ◽  
pp. 763-767
Author(s):  
Luitgardis Seigner ◽  
Marion Liebrecht ◽  
Linda Keckel ◽  
Katharina Einberger ◽  
Carolin Absmeier

Abstract Citrus bark cracking viroid (CBCVd), formerly known as pathogen in the genus Citrus and first detected in Slovenian hops in 2014, threatens hop production as it leads to important economic losses. Reduction in yield and quality and even death of the infected plants within a few years are typical observations due to CBCVd infections of hops. The viroid is easily transmitted and spreads rapidly. As it cannot be controlled by plant protection measures, avoiding its introduction into hop gardens and eradicating first centres of infection are of utmost importance. An indispensable prerequisite is a reliable detection method suitable for large-scale routine testing. In this study, the development of primers and probe for real-time RT-PCR for sensitive CBCVd detection is described. To exclude “false negative” results, a nad5 mRNA-based internal positive control was included. To our knowledge, this is the first time such a duplex real-time RT-PCR detection method for CBCVd at least in hops is described. In addition, first method validation data are presented.


Sign in / Sign up

Export Citation Format

Share Document