Feed preparation and feed management strategies within semi-intensive fish farming systems in the tropics

Aquaculture ◽  
1997 ◽  
Vol 151 (1-4) ◽  
pp. 379-404 ◽  
Author(s):  
Albert G.J. Tacon ◽  
Sena S. De Silva
2022 ◽  
pp. 074873042110694
Author(s):  
Miguel F. Perea ◽  
Daniel A. Perdomo ◽  
Zenaida A. Corredor ◽  
Mario González ◽  
Hugo Hernandez-Fonseca ◽  
...  

A robust body of evidence has demonstrated that the lunar cycle plays an important role in the reproduction of fish living in natural environments. However, little is known about the influence of the moon on tilapia reproductive activity in intensive fish farming systems. This study aims to evaluate the influence of the lunar cycle on the reproductive performance of tilapias in an intensive outdoor tropical production system in Latin America. Records of two tilapia strains (Nile tilapia [ Oreochromis niloticus; n = 75] and Red tilapia [ Oreochromis spp.; n = 1335]) reared in concrete tanks in a commercial fish farm were analyzed. Over a 3-year period, 60,136 captures were made in intervals of 12 to 14 days and 6,600 females were manually spawned. The number of females spawned and the volume of eggs collected from each tank ( n = 9) were recorded. Data was analyzed by the general linear model and means were compared by least squares means method. A very slight or no variation was observed when the lunar cycle was split into two halves (crescent and waning). The proportions of females spawned and the volume of eggs per spawned female and per female in the tank varied considerably across the eight periods of the lunar cycle, with greater values in the waning than in the crescent phase. A significantly greater proportion of tilapia spawned and yielded more eggs around the full moon than around the new moon and remaining days of the lunar cycle. The moon cycle affected the reproductive activity of tilapia, which were more reproductively active around the full moon and most of the waning phase.


Author(s):  
D.I. Gray ◽  
J.I. Reid ◽  
D.J. Horne

A group of 24 Hawke's Bay hill country farmers are working with service providers to improve the resilience of their farming systems. An important step in the process was to undertake an inventory of their risk management strategies. Farmers were interviewed about their farming systems and risk management strategies and the data was analysed using descriptive statistics. There was considerable variation in the strategies adopted by the farmers to cope with a dryland environment. Importantly, these strategies had to cope with three types of drought and also upside risk (better than expected conditions), and so flexibility was critical. Infra-structure was important in managing a dryland environment. Farmers chose between increased scale (increasing farm size) and geographic dispersion (owning a second property in another location) through to intensification (investing in subdivision, drainage, capital fertiliser, new pasture species). The study identified that there may be scope for further investment in infra-structural elements such as drainage, deeper rooting alternative pasture species and water harvesting, along with improved management of subterranean clover to improve flexibility. Many of the farmers used forage crops and idling capacity (reduced stocking rate) to improve flexibility; others argued that maintaining pasture quality and managing upside risk was a better strategy in a dryland environment. Supplementary feed was an important strategy for some farmers, but its use was limited by contour and machinery constraints. A surprisingly large proportion of farmers run breeding cows, a policy that is much less flexible than trading stock. However, several farmers had improved their flexibility by running a high proportion of trading cattle and buffer mobs of ewe hoggets and trade lambs. To manage market risk, the majority of farmers are selling a large proportion of their lambs prime. Similarly, cattle are either sold prime or store onto the grass market when prices are at a premium. However, market risk associated with the purchase of supplements and grazing was poorly managed.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 330
Author(s):  
Jean-Christophe Castella ◽  
Sonnasack Phaipasith

Road expansion has played a prominent role in the agrarian transition that marked the integration of swidden-based farming systems into the market economy in Southeast Asia. Rural roads deeply altered the landscape and livelihood structures by allowing the penetration of boom crops such as hybrid maize in remote territories. In this article, we investigate the impact of rural road developments on livelihoods in northern Laos through a longitudinal study conducted over a period of 15 years in a forest frontier. We studied adaptive management strategies of local stakeholders through the combination of individual surveys, focus group discussions, participatory mapping and remote-sensing approaches. The study revealed the short-term benefits of the maize feeder roads on poverty alleviation and rural development, but also the negative long-term effects on agroecosystem health and agricultural productivity related to unsustainable land use. Lessons learnt about the mechanisms of agricultural intensification helped understanding the constraints faced by external interventions promoting sustainable land management practices. When negotiated by local communities for their own interest, roads may provide livelihood-enhancing opportunities through access to external resources, rather than undermining them.


Author(s):  
Marianna Fenzi ◽  
Paul Rogé ◽  
Angel Cruz-Estrada ◽  
John Tuxill ◽  
Devra Jarvis

AbstractLocal seed systems remain the fundamental source of seeds for many crops in developing countries. Climate resilience for small holder farmers continues to depend largely on locally available seeds of traditional crop varieties. High rainfall events can have as significant an impact on crop production as increased temperatures and drought. This article analyzes the dynamics of maize diversity over 3 years in a farming community of Yucatán state, Mexico, where elevated levels of precipitation forced farmers in 2012 to reduce maize diversity in their plots. We study how farmers maintained their agroecosystem resilience through seed networks, examining the drivers influencing maize diversity and seed provisioning in the year preceding and following the 2012 climatic disturbance (2011–2013). We found that, under these challenging circumstances, farmers focused their efforts on their most reliable landraces, disregarding hybrids. We show that farmers were able to recover and restore the diversity usually cultivated in the community in the year following the critical climate event. The maize dynamic assessed in this study demonstrates the importance of community level conservation of crop diversity. Understanding farmer management strategies of agrobiodiversity, especially during a challenging climatic period, is necessary to promote a more tailored response to climate change in traditional farming systems.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1932
Author(s):  
Nesrein M. Hashem ◽  
Antonio Gonzalez-Bulnes

Reproductive efficiency of farm animals has central consequences on productivity and profitability of livestock farming systems. Optimal reproductive management is based on applying different strategies, including biological, hormonal, nutritional strategies, as well as reproductive disease control. These strategies should not only guarantee sufficient reproductive outcomes but should also comply with practical and ethical aspects. For example, the efficiency of the biological- and hormonal-based reproductive strategies is mainly related to several biological factors and physiological status of animals, and of nutritional strategies, additional factors, such as digestion and absorption, can contribute. In addition, the management of reproductive-related diseases is challenged by the concerns regarding the intensive use of antibiotics and the development of antimicrobial resistant strains. The emergence of nanotechnology applications in livestock farming systems may present innovative and new solutions for overcoming reproductive management challenges. Many drugs (hormones and antibiotics), biological molecules, and nutrients can acquire novel physicochemical properties using nanotechnology; the main ones are improved bioavailability, higher cellular uptake, controlled sustained release, and lower toxicity compared with ordinary forms. In this review, we illustrate advances in the most common reproductive management strategies by applying nanotechnology, considering the current challenges of each strategy.


2014 ◽  
Vol 65 (7) ◽  
pp. 583 ◽  
Author(s):  
J. A. Kirkegaard ◽  
J. R. Hunt ◽  
T. M. McBeath ◽  
J. M. Lilley ◽  
A. Moore ◽  
...  

Improving the water-limited yield of dryland crops and farming systems has been an underpinning objective of research within the Australian grains industry since the concept was defined in the 1970s. Recent slowing in productivity growth has stimulated a search for new sources of improvement, but few previous research investments have been targeted on a national scale. In 2008, the Australian grains industry established the 5-year, AU$17.6 million, Water Use Efficiency (WUE) Initiative, which challenged growers and researchers to lift WUE of grain-based production systems by 10%. Sixteen regional grower research teams distributed across southern Australia (300–700 mm annual rainfall) proposed a range of agronomic management strategies to improve water-limited productivity. A coordinating project involving a team of agronomists, plant physiologists, soil scientists and system modellers was funded to provide consistent understanding and benchmarking of water-limited yield, experimental advice and assistance, integrating system science and modelling, and to play an integration and communication role. The 16 diverse regional project activities were organised into four themes related to the type of innovation pursued (integrating break-crops, managing summer fallows, managing in-season water-use, managing variable and constraining soils), and the important interactions between these at the farm-scale were explored and emphasised. At annual meetings, the teams compared the impacts of various management strategies across different regions, and the interactions from management combinations. Simulation studies provided predictions of both a priori outcomes that were tested experimentally and extrapolation of results across sites, seasons and up to the whole-farm scale. We demonstrated experimentally that potential exists to improve water productivity at paddock scale by levels well above the 10% target by better summer weed control (37–140%), inclusion of break crops (16–83%), earlier sowing of appropriate varieties (21–33%) and matching N supply to soil type (91% on deep sands). Capturing synergies from combinations of pre- and in-crop management could increase wheat yield at farm scale by 11–47%, and significant on-farm validation and adoption of some innovations has occurred during the Initiative. An ex post economic analysis of the Initiative estimated a benefit : cost ratio of 3.7 : 1, and an internal return on investment of 18.5%. We briefly review the structure and operation of the initiative and summarise some of the key strategies that emerged to improve WUE at paddock and farm-scale.


Sign in / Sign up

Export Citation Format

Share Document