Some finite elements for the static analysis of beams with varying cross section

1998 ◽  
Vol 69 (2) ◽  
pp. 191-196 ◽  
Author(s):  
Claudio Franciosi ◽  
Maria Mecca
2019 ◽  
Author(s):  
Hossein Alimohammadi ◽  
Mostafa Dalvi Esfahani ◽  
Mohammadali Lotfollahi Yaghin

In this study, the seismic behavior of the concrete shear wall considering the opening with different shapes and constant cross-section has been studied, and for this purpose, several shear walls are placed under the increasingly non-linear static analysis (Pushover). These case studies modeled in 3D Abaqus Software, and the results of the ductility coefficient, hardness, energy absorption, added resistance, the final shape, and the final resistance are compared to shear walls without opening.


2011 ◽  
Vol 117-119 ◽  
pp. 1543-1546
Author(s):  
Xiao Fei Li ◽  
Chun Yi Cui ◽  
De Hai Yu

Based on the principle of thermal expansion and theory of virtual work, a class of equations for in-plane displacements at three freedom direction and internal forces in the cross-section of statically indeterminate curved beams under thermo load are derived explicitly. In the case of infinite limit of radius, these equations coincide with that of the straight beams. Compared with the results of FEM, the analytical solutions by the proposed formulae are accurate. The analytical solutions obtained in this paper would provide a scientific base for further study and design of the curved bridges.


2016 ◽  
Vol 08 (02) ◽  
pp. 1650026 ◽  
Author(s):  
Gaetano Giunta ◽  
Salim Belouettar ◽  
Olivier Polit ◽  
Laurent Gallimard ◽  
Philippe Vidal ◽  
...  

A family of hierarchical one-dimensional beam finite elements developed within a variables separation framework is presented. A Proper Generalized Decomposition (PGD) is used to divide the global three-dimensional problem into two coupled ones: one defined on the cross-section space (beam modeling kinematic approximation) and one belonging to the axis space (finite element solution). The displacements over the cross-section are approximated via a Unified Formulation (UF). A Lagrangian approximation is used along the beam axis. The resulting problems size is smaller than that of the classical equivalent finite element solution. The approach is, then, particularly attractive for higher-order beam models and refined axial meshes. The numerical investigations show that the proposed method yields accurate yet computationally affordable three-dimensional displacement and stress fields solutions.


2011 ◽  
Vol 423 ◽  
pp. 143-153 ◽  
Author(s):  
Florent Ilczyszyn ◽  
Abel Cherouat ◽  
Guillaume Montay

These last years, hemp fibres are using as reinforcement for compounds based on polymer in different industrial manufacturing for their interesting mechanical and ecological properties. The hemp fibres present a non constant cross section and complex geometry that can have a high effect on their mechanical properties. The mechanical properties of hemp fibres (Young moduli, longitudinal stress and failure strain) are rather difficult and request a specific characterization method. In this study, a micro-traction test coupled with a numerical imaging treatment and a finite elements method are used. The mechanical tensile test allows to determinate the evolution of the traction load in function of the displacement until the fibre crack. The numerical imaging allows to measure finely the hemp cross section along the fibre and aims to reconstruct a 3D hemp fibre object model from an image sequence captured by a mobile camera. And lastly, the finite elements method allows to take the real fibre geometry into consideration for the mechanical characterization using inverse optimization simplex method.


2015 ◽  
Vol 712 ◽  
pp. 17-22
Author(s):  
Małgorzata Stojek

The paper deals with the application of the so-called T-type finite elements [1] to the calculation of the exterior acoustic problems in two dimensions. The method is based on the use of asuitably truncated T-complete set of Trefftz functions over individual subdomains linked by means ofa least square procedure. The vertex singularities and the Sommerfeld radiation condition are readilyincorporated in the trial functions. In order to show the performance of the approach two examples ofcomputations for infinite cylinders (of circular and square cross section) are presented and comparedwith those obtained by means of h-adaptive FE method [2].


2015 ◽  
Vol 754-755 ◽  
pp. 747-751
Author(s):  
M. Hakim Ibrahim ◽  
S. Shahnaz S. Bakar ◽  
Luqman Musa ◽  
S. Yahud ◽  
S. Zaharah Ahmad ◽  
...  

The inflatable bedpan is designed to provide comfortable, convenient, safe, hygienic, efficient and easy to use to the patients and their caretakers. In order to investigate the suitability thickness of inflatable bedpan for the pressure inflow in bedpan tube, the analysis is done using Catia analysis. The static analysis work is carried out to inflatable bedpan cross section of polyvinyl chloride (PVC) and their relative performances have been observed respectively. The thickness 0.5 mm shows the highest Von Mises Stress which is 21100 kPa compared to 0.8and 1.0 mm thicknesses. The lowest Von Mises Stress observed at thickness 1.0 mm which is 2990 kPa. The less stress obtained can encourage perfect shape of the design. In this paper, by observing the result of static structure analysis obtained, 1 mm is suggested as best thickness to be used as an inflatable bedpan wall because it can withstand more pressure while maintaining its stability.


Sign in / Sign up

Export Citation Format

Share Document