Mechanical Modeling of Hemp Fibres Behaviour Using Digital Imaging Treatment

2011 ◽  
Vol 423 ◽  
pp. 143-153 ◽  
Author(s):  
Florent Ilczyszyn ◽  
Abel Cherouat ◽  
Guillaume Montay

These last years, hemp fibres are using as reinforcement for compounds based on polymer in different industrial manufacturing for their interesting mechanical and ecological properties. The hemp fibres present a non constant cross section and complex geometry that can have a high effect on their mechanical properties. The mechanical properties of hemp fibres (Young moduli, longitudinal stress and failure strain) are rather difficult and request a specific characterization method. In this study, a micro-traction test coupled with a numerical imaging treatment and a finite elements method are used. The mechanical tensile test allows to determinate the evolution of the traction load in function of the displacement until the fibre crack. The numerical imaging allows to measure finely the hemp cross section along the fibre and aims to reconstruct a 3D hemp fibre object model from an image sequence captured by a mobile camera. And lastly, the finite elements method allows to take the real fibre geometry into consideration for the mechanical characterization using inverse optimization simplex method.

2015 ◽  
Vol 1099 ◽  
pp. 25-31 ◽  
Author(s):  
Abel Cherouat ◽  
Guillaume Montay ◽  
Florent Ilczyszyn

Hemp fibres are using as reinforcement for compounds based on polymer in different industrial manufacturing (aerospace and automotive) for their interesting mechanical and ecological properties. The hemp fibres present a non-constant cross section and complex geometry that can have a high effect on their mechanical properties. In this study, a micro-traction test coupled with a numerical imaging treatment and a finite elements method are used. The mechanical tensile test allows to determinate the evolution of the traction load in function of the displacement until the fibre crack. The used fiber are incorporate in plastic material is order to obtained PP/hemp reinforcement composite part. Static and dynamic tests are proposed in order to study trhe behaviour of green material subjected to tensile load.


2014 ◽  
Vol 875-877 ◽  
pp. 485-489 ◽  
Author(s):  
Florent Ilczyszyn ◽  
Abel Cherouat ◽  
Guillaume Montay

The hemp fibres present specific fibre morphology and a complex non homogeneous cross section which changes in function of the location along the fibre length. Thus the mechanical properties of hemp fibres request a specific characterization method. In this study, firstly, a digital treatment method was developed allowing to consider different geometrical modelling methods: homogeneous or non-homogenous cross section, average global cross section, and cross section measured at the rupture location, including a 3D CAD model reconstruction of the fibre.


ChemPhysChem ◽  
2004 ◽  
Vol 5 (2) ◽  
pp. 252-257 ◽  
Author(s):  
Sandor Kasas ◽  
András Kis ◽  
Beat Michel Riederer ◽  
Lászlo Forró ◽  
Giovanni Dietler ◽  
...  

2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Sebastián Irarrázaval ◽  
Jorge Andrés Ramos-Grez ◽  
Luis Ignacio Pérez ◽  
Pablo Besa ◽  
Angélica Ibáñez

AbstractThe finite elements method allied with the computerized axial tomography (CT) is a mathematical modeling technique that allows constructing computational models for bone specimens from CT data. The objective of this work was to compare the experimental biomechanical behavior by three-point bending tests of porcine femur specimens with different types of computational models generated through the finite elements’ method and a multiple density materials assignation scheme. Using five femur specimens, 25 scenarios were created with differing quantities of materials. This latter was applied to computational models and in bone specimens subjected to failure. Among the three main highlights found, first, the results evidenced high precision in predicting experimental reaction force versus displacement in the models with larger number of assigned materials, with maximal results being an R2 of 0.99 and a minimum root-mean-square error of 3.29%. Secondly, measured and computed elastic stiffness values follow same trend with regard to specimen mass, and the latter underestimates stiffness values a 6% in average. Third and final highlight, this model can precisely and non-invasively assess bone tissue mechanical resistance based on subject-specific CT data, particularly if specimen deformation values at fracture are considered as part of the assessment procedure.


2021 ◽  
Vol 13 (10) ◽  
pp. 5494
Author(s):  
Lucie Kucíková ◽  
Michal Šejnoha ◽  
Tomáš Janda ◽  
Jan Sýkora ◽  
Pavel Padevět ◽  
...  

Heating wood to high temperature changes either temporarily or permanently its physical properties. This issue is addressed in the present contribution by examining the effect of high temperature on residual mechanical properties of spruce wood, grounding on the results of full-scale fire tests performed on GLT beams. Given these tests, a computational model was developed to provide through-thickness temperature profiles allowing for the estimation of a charring depth on the one hand and on the other hand assigning a particular temperature to each specimen used subsequently in small-scale tensile tests. The measured Young’s moduli and tensile strengths were accompanied by the results from three-point bending test carried out on two groups of beams exposed to fire of a variable duration and differing in the width of the cross-section, b=100 mm (Group 1) and b=160 mm (Group 2). As expected, increasing the fire duration and reducing the initial beam cross-section reduces the residual bending strength. A negative impact of high temperature on residual strength has also been observed from simple tensile tests, although limited to a very narrow layer adjacent to the charring front not even exceeding a typically adopted value of the zero-strength layer d0=7 mm. On the contrary, the impact on stiffness is relatively mild supporting the thermal recovery property of wood.


2019 ◽  
Vol 136 ◽  
pp. 02030
Author(s):  
Chen Dong ◽  
Chen Ming ◽  
Cai Ouyang ◽  
Li Pengkun

The GRC formwork structural column adopts the factory-based vertical prefabrication production process, which can reduce the floor space, reduce the formwork loss, speed up the construction progress, promote the full decoration of the prefabricated building, and improve the efficiency of the assembly construction. major. In order to optimize the production process of prefabricated GRC formwork column, the overall stress system of GRC formwork structure is analyzed in the concrete pouring process, and the thickness of GRC formwork, the number of steel hoops and the GRC mode are considered. The influence of the shell cross-section size on the mechanical properties. The research results can provide reference for the optimization and design of prefabricated GRC formwork column production process.


2017 ◽  
Vol 883 ◽  
pp. 75-84 ◽  
Author(s):  
Nireeksha Karode ◽  
Laurence Fitzhenry ◽  
Siobhán Matthews ◽  
Philip Walsh ◽  
Austin Coffey

Medical tubing used in minimally invasive devices presents a number of design considerations depending on the material used, design requirements (such as sufficient stiffness, flexibility and biocompatibility) and processing conditions. Currently, manufacturing industries adopt co-extrusion systems to meet design specifications, by using multilayer configuration leading to higher cost per device and increased complexity. This paper investigates the mechanical performance of nanocomposites using supercritical carbon dioxide assisted polymer processing technique. The use of innovative medical compounds such as PEBAX graphene nanocomposites have resulted in measurable improvements in mechanical properties. This study also presents the effect of supercritical carbon dioxide on the mechanical and physical properties of the polymer matrix. The mechanical properties have been investigated using dynamic mechanical analysis (DMA) and mechanical tensile test, where sufficient reinforcement was observed depending on the composition of graphene within PEBAX matrix. ATR-FTIR was used to further analyze the effect of supercritical carbon dioxide and interactions within the polymer composite matrix.


2005 ◽  
Vol 475-479 ◽  
pp. 1533-1536
Author(s):  
Liu Ding Tang ◽  
Xue Bin Zhang ◽  
Bing Zhe Li

Based on equivalent transformation by means of mathematically rigorous analytics, the stress analysis of heavy cross-sectional, non-homogeneous Functionally Graded Composites (FGCs) has been performed by the layering calculation model in axis-symmetrical mechanics problems. The partially calculated results of the non-homogeneous layered thick-walled metal tube are similar to the design and practice of machine forging moulds manufactured with special welding electrodes developed by the German Capilla Company. The analysis is used complementary to the investigation of the quantitative analysis of thermo-mechanical properties, or the so-called anti-design and the optimization of the graded structure for FGCs.


Sign in / Sign up

Export Citation Format

Share Document