Effect of fucoidan on fibroblast growth factor-2-induced angiogenesis in vitro

2002 ◽  
Vol 106 (4-5) ◽  
pp. 213-221 ◽  
Author(s):  
Sabine Matou ◽  
Dominique Helley ◽  
Delphine Chabut ◽  
Andrée Bros ◽  
Anne-Marie Fischer
Author(s):  
Eishin Yaoita ◽  
Masaaki Nameta ◽  
Yutaka Yoshida ◽  
Hidehiko Fujinaka

AbstractFibroblast growth factor 2 (FGF2) augments podocyte injury, which induces glomerulosclerosis, although the mechanisms remain obscure. In this study, we investigated the effects of FGF2 on cultured podocytes with interdigitating cell processes in rats. After 48 h incubation with FGF2 dynamic changes in the shape of primary processes and cell bodies of podocytes resulted in the loss of interdigitation, which was clearly shown by time-lapse photography. FGF2 reduced the gene expressions of constituents of the slit diaphragm, inflections of intercellular junctions positive for nephrin, and the width of the intercellular space. Immunostaining for the proliferation marker Ki-67 was rarely seen and weakly stained in the control without FGF2, whereas intensely stained cells were frequently found in the presence of FGF2. Binucleation and cell division were also observed, although no significant increase in cell number was shown. An in vitro scratch assay revealed that FGF2 enhanced migration of podocytes. These findings show that FGF2 makes podocytes to transition from the quiescent state into the cell cycle and change their morphology due to enhanced motility, and that the culture system in this study is useful for analyzing the pathological changes of podocytes in vivo.


1999 ◽  
Vol 19 (1) ◽  
pp. 505-514 ◽  
Author(s):  
Emmanuelle Arnaud ◽  
Christian Touriol ◽  
Christel Boutonnet ◽  
Marie-Claire Gensac ◽  
Stéphan Vagner ◽  
...  

ABSTRACT Four isoforms of human fibroblast growth factor 2 (FGF-2) result from alternative initiations of translation at three CUG start codons and one AUG start codon. Here we characterize a new 34-kDa FGF-2 isoform whose expression is initiated at a fifth initiation codon. This 34-kDa FGF-2 was identified in HeLa cells by using an N-terminal directed antibody. Its initiation codon was identified by site-directed mutagenesis as being a CUG codon located at 86 nucleotides (nt) from the FGF-2 mRNA 5′ end. Both in vitro translation and COS-7 cell transfection using bicistronic RNAs demonstrated that the 34-kDa FGF-2 was exclusively expressed in a cap-dependent manner. This contrasted with the expression of the other FGF-2 isoforms of 18, 22, 22.5, and 24 kDa, which is controlled by an internal ribosome entry site (IRES). Strikingly, expression of the other FGF-2 isoforms became partly cap dependent in vitro in the presence of the 5,823-nt-long 3′ untranslated region of FGF-2 mRNA. Thus, the FGF-2 mRNA can be translated both by cap-dependent and IRES-driven mechanisms, the balance between these two mechanisms modulating the ratio of the different FGF-2 isoforms. The function of the new FGF-2 was also investigated. We found that the 34-kDa FGF-2, in contrast to the other isoforms, permitted NIH 3T3 cell survival in low-serum conditions. A new arginine-rich nuclear localization sequence (NLS) in the N-terminal region of the 34-kDa FGF-2 was characterized and found to be similar to the NLS of human immunodeficiency virus type 1 Rev protein. These data suggest that the function of the 34-kDa FGF-2 is mediated by nuclear targets.


2009 ◽  
Vol 106 (17) ◽  
pp. 7191-7196 ◽  
Author(s):  
Beatrice Paradiso ◽  
Peggy Marconi ◽  
Silvia Zucchini ◽  
Elena Berto ◽  
Anna Binaschi ◽  
...  

A loss of neurons is observed in the hippocampus of many patients with epilepsies of temporal lobe origin. It has been hypothesized that damage limitation or repair, for example using neurotrophic factors (NTFs), may prevent the transformation of a normal tissue into epileptic (epileptogenesis). Here, we used viral vectors to locally supplement two NTFs, fibroblast growth factor–2 (FGF-2) and brain-derived neurotrophic factor (BDNF), when epileptogenic damage was already in place. These vectors were first characterized in vitro, where they increased proliferation of neural progenitors and favored their differentiation into neurons, and they were then tested in a model of status epilepticus-induced neurodegeneration and epileptogenesis. When injected in a lesioned hippocampus, FGF-2/BDNF expressing vectors increased neuronogenesis, embanked neuronal damage, and reduced epileptogenesis. It is concluded that reduction of damage reduces epileptogenesis and that supplementing specific NTFs in lesion areas represents a new approach to the therapy of neuronal damage and of its consequences.


1997 ◽  
Vol 249 (2) ◽  
pp. 473-480 ◽  
Author(s):  
Sylvie Colin ◽  
Frederic Mascarelli ◽  
Jean-Claude Jeanny ◽  
Raymond Vienet ◽  
Gerard Bouche ◽  
...  

2016 ◽  
Vol 130 (9) ◽  
pp. 667-681 ◽  
Author(s):  
Szu-Yu Chien ◽  
Chun-Yin Huang ◽  
Chun-Hao Tsai ◽  
Shih-Wei Wang ◽  
Yu-Min Lin ◽  
...  

Angiogenesis is an important event in the process of arthritis. Stimulating chondrocytes with IL-1β increased the expression of FGF-2, via the IL-1RI/ROS/AMPK/p38/NF-κB signalling pathway. FGF-2-neutralizing antibody abolished ATDC5-conditional medium-mediated angiogenesis both in vitro and in vivo.


2011 ◽  
Vol 23 (1) ◽  
pp. 236 ◽  
Author(s):  
K. Zhang ◽  
P. J. Hansen ◽  
A. D. Ealy

Oocyte competency is acquired during the course of folliculogenesis and is controlled by various endocrine and paracrine signals. One of these is fibroblast growth factor 2 (FGF2). Its expression is up-regulated in theca and granulosa cells during final maturation of a bovine follicle, and its cognate receptors are expressed in cumulus cells and oocytes throughout the final stages of oocyte maturation. The overall goal of this work was to describe how supplementing FGF2 during oocyte maturation in vitro affects oocyte maturation and subsequent embryo development. Cumulus–oocyte complexes (COC) were collected from bovine ovaries obtained from a local abattoir and cultured in defined TCM-based oocyte maturation medium. Depending on the study, oocytes were examined either during (6 h) or after (21 h) maturation or were fertilized in vitro and examined throughout in vitro embryo development in modified SOFF. Data were analysed with least-squares ANOVA using GLM of SAS. Adding 0.5 to 50 ng mL–1 of FGF2 did not affect cleavage rate or the percentage of 8 to 16 cell embryos at day 3 post-IVF. However, the blastocyst rate at day 7 was greater when oocytes were exposed to 0.5 ng mL–1 of FGF2 during maturation [30.0 ± 1.9% (17/109) v. 16.0 ± 2.6% (23/77) for nontreatment control; 4 replicates; P < 0.05], whereas higher doses of FGF2 did not affect blastocyst rates when compared with controls. Total cell number per blastocyst was not affected by FGF2 addition. The effects of FGF2 on oocyte maturation and cumulus expansion were examined to better understand how FGF2 improves oocyte competency. Adding 0.5 ng mL–1 of FGF2 did not affect the percentage of oocytes containing condensed chromatin after 6 h IVM or metaphase II (MII) rate after 21 h IVM, but 0.5 ng mL–1 of FGF2 treatment increased the cumulus expansion index score after 21 h IVM (P < 0.05). Interestingly, adding 5 ng mL–1 but not 50 ng mL–1 of FGF2 increased MII rate [61.5 ± 4.3% (53/120) for 5 ng mL–1 of FGF2 v. 46.9 ± 5.9% (64/104) for nontreatment controls; 7 replicates; P < 0.05], but neither FGF2 affected rates of chromatin condensation and cumulus expansion. Changes in the relative abundance for several putative oocyte competency markers and maternal genes (CTSB, Sprouty2, EGFR, FSHR, Has2, BMP15, GDF9, JY-1, Follistatin, H2A) were examined at 6 and 21 h after treatment with 0.5 ng mL–1 of FGF2 by quantitative RT-PCR. Relative amounts of 18S RNA was used as an internal control, and 2-ΔΔCT was used to quantify relative gene expression. The relative abundance of most of the transcripts examined was not affected by FGF2, but EGFR mRNA levels were greater after 6 h but not 21 h IVM in cumulus cells isolated from FGF2-supplemented COC (P = 0.057). In summary, improvements in blastocyst development were achieved by FGF2 treatment during oocyte maturation. The reason for the enhanced oocyte competency remains unclear, but it may occur in part because of improvements in cumulus expansion and production of EGFR. This project was supported by NRICGP number 2008-35203-19106 from the USDA-NIFA.


Sign in / Sign up

Export Citation Format

Share Document