Histidine kinases and the role of two-component systems in plants

2000 ◽  
pp. 109-148 ◽  
Author(s):  
G.Eric Schaller
Biochemistry ◽  
2013 ◽  
Vol 52 (27) ◽  
pp. 4656-4666 ◽  
Author(s):  
Fernando Correa ◽  
Wen-Huang Ko ◽  
Victor Ocasio ◽  
Roberto A. Bogomolni ◽  
Kevin H. Gardner

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 34
Author(s):  
Lisa Bleul ◽  
Patrice Francois ◽  
Christiane Wolz

Staphylococcus aureus encodes 16 two-component systems (TCSs) that enable the bacteria to sense and respond to changing environmental conditions. Considering the function of these TCSs in bacterial survival and their potential role as drug targets, it is important to understand the exact mechanisms underlying signal perception. The differences between the sensing of appropriate signals and the transcriptional activation of the TCS system are often not well described, and the signaling mechanisms are only partially understood. Here, we review present insights into which signals are sensed by histidine kinases in S. aureus to promote appropriate gene expression in response to diverse environmental challenges.


2014 ◽  
Vol 92 (6) ◽  
pp. 1326-1342 ◽  
Author(s):  
Eva Hentschel ◽  
Christina Mack ◽  
Cornelia Gätgens ◽  
Michael Bott ◽  
Melanie Brocker ◽  
...  

2019 ◽  
Author(s):  
Jan Balewski ◽  
Zachary F. Hallberg

AbstractTwo-component systems (2CS) are a primary method that bacteria use to detect and respond to environmental stimuli. Receptor histidine kinases (HK) detect an environmental signal, activating the appropriate response regulator (RR). Genes for such cognate HK-RR pairs are often located proximally on the chromosome, allowing easier identification of the target for a particular signal. However, almost half of all HK and RR proteins are orphans, with no nearby partner, complicating identification of the proteins that respond to a particular signal. To address this problem, we trained a neural network on the amino acid sequences of known 2CS pairs. Next, we developed a recommender algorithm that ranks a set of HKs for an arbitrary fixed RR and arbitrary species whose amino acid sequences are known. The recommender strongly favors known 2CS pairs, and correctly selects orphan pairs in Escherichia coli. We expect that use of these results will permit rapid discovery of orphan HK-RR pairs.


Author(s):  
E. Naomab ◽  
S. Gattolin ◽  
M. Alandete-Saez ◽  
K. Elliott ◽  
Z. Gonzalez-Carranza ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Felipe Trajtenberg ◽  
Juan A Imelio ◽  
Matías R Machado ◽  
Nicole Larrieux ◽  
Marcelo A Marti ◽  
...  

Two-component systems (TCS) are protein machineries that enable cells to respond to input signals. Histidine kinases (HK) are the sensory component, transferring information toward downstream response regulators (RR). HKs transfer phosphoryl groups to their specific RRs, but also dephosphorylate them, overall ensuring proper signaling. The mechanisms by which HKs discriminate between such disparate directions, are yet unknown. We now disclose crystal structures of the HK:RR complex DesK:DesR from Bacillus subtilis, comprising snapshots of the phosphotransfer and the dephosphorylation reactions. The HK dictates the reactional outcome through conformational rearrangements that include the reactive histidine. The phosphotransfer center is asymmetric, poised for dissociative nucleophilic substitution. The structural bases of HK phosphatase/phosphotransferase control are uncovered, and the unexpected discovery of a dissociative reactional center, sheds light on the evolution of TCS phosphotransfer reversibility. Our findings should be applicable to a broad range of signaling systems and instrumental in synthetic TCS rewiring.


Sign in / Sign up

Export Citation Format

Share Document