Oxygen and Redox Sensing by Two‐Component Systems That Regulate Behavioral Responses: Behavioral Assays and Structural Studies of Aer Using In Vivo Disulfide Cross‐Linking

Author(s):  
Barry L. Taylor ◽  
Kylie J. Watts ◽  
Mark S. Johnson
Microbiology ◽  
2002 ◽  
Vol 148 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Daniël T Verhamme ◽  
Jos C Arents ◽  
Pieter W Postma ◽  
Wim Crielaard ◽  
Klaas J Hellingwerf

2016 ◽  
Vol 198 (18) ◽  
pp. 2419-2430 ◽  
Author(s):  
Jonathan M. Burgos ◽  
Michael P. Schmitt

ABSTRACTCorynebacterium diphtheriaeutilizes heme and hemoglobin (Hb) as iron sources for growth in low-iron environments. InC. diphtheriae, the two-component signal transduction systems (TCSs) ChrSA and HrrSA are responsive to Hb levels and regulate the transcription of promoters forhmuO,hrtAB, andhemA. ChrSA and HrrSA activate transcription at thehmuOpromoter and repress transcription athemAin an Hb-dependent manner. In this study, we show that HrrSA is the predominant repressor athemAand that its activity results in transcriptional repression in the presence and absence of Hb, whereas repression ofhemAby ChrSA is primarily responsive to Hb. DNA binding studies showed that both ChrA and HrrA bind to thehemApromoter region at virtually identical sequences. ChrA binding was enhanced by phosphorylation, while binding to DNA by HrrA was independent of its phosphorylation state. ChrA and HrrA are phosphorylatedin vitroby the sensor kinase ChrS, whereas no kinase activity was observed with HrrSin vitro. Phosphorylated ChrA was not observedin vivo, even in the presence of Hb, which is likely due to the instability of the phosphate moiety on ChrA. However, phosphorylation of HrrA was observedin vivoregardless of the presence of the Hb inducer, and genetic analysis indicates that ChrS is responsible for most of the phosphorylation of HrrAin vivo. Phosphorylation studies strongly suggest that HrrS functions primarily as a phosphatase and has only minimal kinase activity. These findings collectively show a complex mechanism of regulation at thehemApromoter, where both two-component systems act in concert to optimize expression of heme biosynthetic enzymes.IMPORTANCEUnderstanding the mechanism by which two-component signal transduction systems function to respond to environmental stimuli is critical to the study of bacterial pathogenesis. The current study expands on the previous analyses of the ChrSA and HrrSA TCSs in the human pathogenC. diphtheriae. The findings here underscore the complex interactions between the ChrSA and HrrSA systems in the regulation of thehemApromoter and demonstrate how the two systems complement one another to refine and control transcription in the presence and absence of Hb.


2015 ◽  
Vol 11 (5) ◽  
pp. 1348-1359 ◽  
Author(s):  
Goran Jovanovic ◽  
Xia Sheng ◽  
Angelique Ale ◽  
Elisenda Feliu ◽  
Heather A. Harrington ◽  
...  

Two-component systems play a central part in bacterial signal transduction.


2005 ◽  
Vol 73 (5) ◽  
pp. 3152-3159 ◽  
Author(s):  
Tatjana Williams ◽  
Susanne Bauer ◽  
Dagmar Beier ◽  
Michael Kuhn

ABSTRACT Two-component systems are widely distributed in prokaryotes where they control gene expression in response to diverse stimuli. To study the role of the sixteen putative two-component systems of Listeria monocytogenes systematically, in frame deletions were introduced into 15 out of the 16 response regulator genes and the resulting mutants were characterized. With one exception the deletion of the individual response regulator genes has only minor effects on in vitro and in vivo growth of the bacteria. The mutant carrying a deletion in the ortholog of the Bacillus subtilis response regulator gene degU showed a clearly reduced virulence in mice, indicating that DegU is involved in the regulation of virulence-associated genes.


2016 ◽  
Vol 85 (2) ◽  
Author(s):  
Jenny-Lee Thomassin ◽  
Jean-Mathieu Leclerc ◽  
Natalia Giannakopoulou ◽  
Lei Zhu ◽  
Kristiana Salmon ◽  
...  

ABSTRACT Citrobacter rodentium is a murine pathogen used to model intestinal infections caused by the human diarrheal pathogens enterohemorrhagic and enteropathogenic Escherichia coli. During infection, bacteria use two-component systems (TCSs) to detect changing environmental cues within the host, allowing for rapid adaptation by altering the expression of specific genes. In this study, 26 TCSs were identified in C. rodentium, and quantitative PCR (qPCR) analysis showed that they are all expressed during murine infection. These TCSs were individually deleted, and the in vitro and in vivo effects were analyzed to determine the functional consequences. In vitro analyses only revealed minor differences, and surprisingly, type III secretion (T3S) was only affected in the ΔarcA strain. Murine infections identified 7 mutants with either attenuated or increased virulence. In agreement with the in vitro T3S assay, the ΔarcA strain was attenuated and defective in colonization and cell adherence. The ΔrcsB strain was among the most highly attenuated strains. The decrease in virulence of this strain may be associated with changes to the cell surface, as Congo red binding was altered, and qPCR revealed that expression of the wcaA gene, which has been implicated in colanic acid production in other bacteria, was drastically downregulated. The ΔuvrY strain exhibited increased virulence compared to the wild type, which was associated with a significant increase in bacterial burden within the mesenteric lymph nodes. The systematic analysis of virulence-associated TCSs and investigation of their functions during infection may open new avenues for drug development.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Felipe Trajtenberg ◽  
Daniela Albanesi ◽  
Natalia Ruétalo ◽  
Horacio Botti ◽  
Ariel E. Mechaly ◽  
...  

ABSTRACT Response regulators are proteins that undergo transient phosphorylation, connecting specific signals to adaptive responses. Remarkably, the molecular mechanism of response regulator activation remains elusive, largely because of the scarcity of structural data on multidomain response regulators and histidine kinase/response regulator complexes. We now address this question by using a combination of crystallographic data and functional analyses in vitro and in vivo, studying DesR and its cognate sensor kinase DesK, a two-component system that controls membrane fluidity in Bacillus subtilis. We establish that phosphorylation of the receiver domain of DesR is allosterically coupled to two distinct exposed surfaces of the protein, controlling noncanonical dimerization/tetramerization, cooperative activation, and DesK binding. One of these surfaces is critical for both homodimerization- and kinase-triggered allosteric activations. Moreover, DesK induces a phosphorylation-independent activation of DesR in vivo, uncovering a novel and stringent level of specificity among kinases and regulators. Our results support a model that helps to explain how response regulators restrict phosphorylation by small-molecule phosphoryl donors, as well as cross talk with noncognate sensors. IMPORTANCE The ability to sense and respond to environmental variations is an essential property for cell survival. Two-component systems mediate key signaling pathways that allow bacteria to integrate extra- or intracellular signals. Here we focus on the DesK/DesR system, which acts as a molecular thermometer in B. subtilis, regulating the cell membrane’s fluidity. Using a combination of complementary approaches, including determination of the crystal structures of active and inactive forms of the response regulator DesR, we unveil novel molecular mechanisms of DesR’s activation switch. In particular, we show that the association of the cognate histidine kinase DesK triggers DesR activation beyond the transfer of the phosphoryl group. On the basis of sequence and structural analyses of other two-component systems, this activation mechanism appears to be used in a wide range of sensory systems, contributing a further level of specificity control among different signaling pathways.


2000 ◽  
Author(s):  
Grigory V. Merkulov ◽  
Valentin M. Ievlev ◽  
Evgeny V. Shvedov ◽  
Vadim P. Ampilogov

Sign in / Sign up

Export Citation Format

Share Document