scholarly journals Systematic Analysis of Two-Component Systems in Citrobacter rodentium Reveals Positive and Negative Roles in Virulence

2016 ◽  
Vol 85 (2) ◽  
Author(s):  
Jenny-Lee Thomassin ◽  
Jean-Mathieu Leclerc ◽  
Natalia Giannakopoulou ◽  
Lei Zhu ◽  
Kristiana Salmon ◽  
...  

ABSTRACT Citrobacter rodentium is a murine pathogen used to model intestinal infections caused by the human diarrheal pathogens enterohemorrhagic and enteropathogenic Escherichia coli. During infection, bacteria use two-component systems (TCSs) to detect changing environmental cues within the host, allowing for rapid adaptation by altering the expression of specific genes. In this study, 26 TCSs were identified in C. rodentium, and quantitative PCR (qPCR) analysis showed that they are all expressed during murine infection. These TCSs were individually deleted, and the in vitro and in vivo effects were analyzed to determine the functional consequences. In vitro analyses only revealed minor differences, and surprisingly, type III secretion (T3S) was only affected in the ΔarcA strain. Murine infections identified 7 mutants with either attenuated or increased virulence. In agreement with the in vitro T3S assay, the ΔarcA strain was attenuated and defective in colonization and cell adherence. The ΔrcsB strain was among the most highly attenuated strains. The decrease in virulence of this strain may be associated with changes to the cell surface, as Congo red binding was altered, and qPCR revealed that expression of the wcaA gene, which has been implicated in colanic acid production in other bacteria, was drastically downregulated. The ΔuvrY strain exhibited increased virulence compared to the wild type, which was associated with a significant increase in bacterial burden within the mesenteric lymph nodes. The systematic analysis of virulence-associated TCSs and investigation of their functions during infection may open new avenues for drug development.

2016 ◽  
Vol 198 (18) ◽  
pp. 2419-2430 ◽  
Author(s):  
Jonathan M. Burgos ◽  
Michael P. Schmitt

ABSTRACTCorynebacterium diphtheriaeutilizes heme and hemoglobin (Hb) as iron sources for growth in low-iron environments. InC. diphtheriae, the two-component signal transduction systems (TCSs) ChrSA and HrrSA are responsive to Hb levels and regulate the transcription of promoters forhmuO,hrtAB, andhemA. ChrSA and HrrSA activate transcription at thehmuOpromoter and repress transcription athemAin an Hb-dependent manner. In this study, we show that HrrSA is the predominant repressor athemAand that its activity results in transcriptional repression in the presence and absence of Hb, whereas repression ofhemAby ChrSA is primarily responsive to Hb. DNA binding studies showed that both ChrA and HrrA bind to thehemApromoter region at virtually identical sequences. ChrA binding was enhanced by phosphorylation, while binding to DNA by HrrA was independent of its phosphorylation state. ChrA and HrrA are phosphorylatedin vitroby the sensor kinase ChrS, whereas no kinase activity was observed with HrrSin vitro. Phosphorylated ChrA was not observedin vivo, even in the presence of Hb, which is likely due to the instability of the phosphate moiety on ChrA. However, phosphorylation of HrrA was observedin vivoregardless of the presence of the Hb inducer, and genetic analysis indicates that ChrS is responsible for most of the phosphorylation of HrrAin vivo. Phosphorylation studies strongly suggest that HrrS functions primarily as a phosphatase and has only minimal kinase activity. These findings collectively show a complex mechanism of regulation at thehemApromoter, where both two-component systems act in concert to optimize expression of heme biosynthetic enzymes.IMPORTANCEUnderstanding the mechanism by which two-component signal transduction systems function to respond to environmental stimuli is critical to the study of bacterial pathogenesis. The current study expands on the previous analyses of the ChrSA and HrrSA TCSs in the human pathogenC. diphtheriae. The findings here underscore the complex interactions between the ChrSA and HrrSA systems in the regulation of thehemApromoter and demonstrate how the two systems complement one another to refine and control transcription in the presence and absence of Hb.


2005 ◽  
Vol 73 (5) ◽  
pp. 3152-3159 ◽  
Author(s):  
Tatjana Williams ◽  
Susanne Bauer ◽  
Dagmar Beier ◽  
Michael Kuhn

ABSTRACT Two-component systems are widely distributed in prokaryotes where they control gene expression in response to diverse stimuli. To study the role of the sixteen putative two-component systems of Listeria monocytogenes systematically, in frame deletions were introduced into 15 out of the 16 response regulator genes and the resulting mutants were characterized. With one exception the deletion of the individual response regulator genes has only minor effects on in vitro and in vivo growth of the bacteria. The mutant carrying a deletion in the ortholog of the Bacillus subtilis response regulator gene degU showed a clearly reduced virulence in mice, indicating that DegU is involved in the regulation of virulence-associated genes.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Felipe Trajtenberg ◽  
Daniela Albanesi ◽  
Natalia Ruétalo ◽  
Horacio Botti ◽  
Ariel E. Mechaly ◽  
...  

ABSTRACT Response regulators are proteins that undergo transient phosphorylation, connecting specific signals to adaptive responses. Remarkably, the molecular mechanism of response regulator activation remains elusive, largely because of the scarcity of structural data on multidomain response regulators and histidine kinase/response regulator complexes. We now address this question by using a combination of crystallographic data and functional analyses in vitro and in vivo, studying DesR and its cognate sensor kinase DesK, a two-component system that controls membrane fluidity in Bacillus subtilis. We establish that phosphorylation of the receiver domain of DesR is allosterically coupled to two distinct exposed surfaces of the protein, controlling noncanonical dimerization/tetramerization, cooperative activation, and DesK binding. One of these surfaces is critical for both homodimerization- and kinase-triggered allosteric activations. Moreover, DesK induces a phosphorylation-independent activation of DesR in vivo, uncovering a novel and stringent level of specificity among kinases and regulators. Our results support a model that helps to explain how response regulators restrict phosphorylation by small-molecule phosphoryl donors, as well as cross talk with noncognate sensors. IMPORTANCE The ability to sense and respond to environmental variations is an essential property for cell survival. Two-component systems mediate key signaling pathways that allow bacteria to integrate extra- or intracellular signals. Here we focus on the DesK/DesR system, which acts as a molecular thermometer in B. subtilis, regulating the cell membrane’s fluidity. Using a combination of complementary approaches, including determination of the crystal structures of active and inactive forms of the response regulator DesR, we unveil novel molecular mechanisms of DesR’s activation switch. In particular, we show that the association of the cognate histidine kinase DesK triggers DesR activation beyond the transfer of the phosphoryl group. On the basis of sequence and structural analyses of other two-component systems, this activation mechanism appears to be used in a wide range of sensory systems, contributing a further level of specificity control among different signaling pathways.


2020 ◽  
Vol 69 (6) ◽  
pp. 906-919 ◽  
Author(s):  
Divakar Badal ◽  
Abhijith Vimal Jayarani ◽  
Mohammed Ameen Kollaran ◽  
Aloke Kumar ◽  
Varsha Singh

Introduction. Indwelling medical devices such as endotracheal tubes (ETTs), urinary catheters, vascular access devices, tracheostomies and feeding tubes are often associated with hospital-acquired infections. Bacterial biofilm formed on the ETTs in intubated patients is a significant risk factor associated with ventilator-associated pneumonia. Pseudomonas aeruginosa is one of the four frequently encountered bacteria responsible for causing pneumonia, and the biofilm formation on ETTs. However, understanding of biofilm formation on ETT and interventions to prevent biofilm remains lagging. The ability to sense and adapt to external cues contributes to their success. Thus, the biofilm formation is likely to be influenced by the two-component systems (TCSs) that are composed of a membrane-associated sensor kinase and an intracellular response regulator. Aim. This study aims to establish an in vitro method to analyse the P. aeruginosa biofilm formation on ETTs, and identify the TCSs that contribute to this process. Methodology. In total, 112 P. aeruginosa PA14 TCS mutants were tested for their ability to form biofilm on ETTs, their effect on quorum sensing (QS) and motility. Results. Out of 112 TCS mutants studied, 56 had altered biofilm biomass on ETTs. Although the biofilm formation on ETTs is QS-dependent, none of the 56 loci controlled quorum signal. Of these, 18 novel TCSs specific to ETT biofilm were identified, namely, AauS, AgtS, ColR, CopS, CprR, NasT, KdpD, ParS, PmrB, PprA, PvrS, RcsC, PA14_11120, PA14_32580, PA14_45880, PA14_49420, PA14_52240, PA14_70790. The set of 56 included the GacS network, TCS proteins involved in fimbriae synthesis, TCS proteins involved in antimicrobial peptide resistance, and surface-sensing. Additionally, several of the TCS-encoding genes involved in biofilm formation on ETTs were found to be linked to flagellum-dependent swimming motility. Conclusions. Our study established an in vitro method for studying P. aeruginosa biofilm formation on the ETT surfaces. We also identified novel ETT-specific TCSs that could serve as targets to prevent biofilm formation on indwelling devices frequently used in clinical settings.


mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Julia A. Kleinmanns ◽  
Katherine Decker ◽  
Anand V. Sastry ◽  
Ye Gao ◽  
...  

ABSTRACT Escherichia coli uses two-component systems (TCSs) to respond to environmental signals. TCSs affect gene expression and are parts of E. coli’s global transcriptional regulatory network (TRN). Here, we identified the regulons of five TCSs in E. coli MG1655: BaeSR and CpxAR, which were stimulated by ethanol stress; KdpDE and PhoRB, induced by limiting potassium and phosphate, respectively; and ZraSR, stimulated by zinc. We analyzed RNA-seq data using independent component analysis (ICA). ChIP-exo data were used to validate condition-specific target gene binding sites. Based on these data, we do the following: (i) identify the target genes for each TCS; (ii) show how the target genes are transcribed in response to stimulus; and (iii) reveal novel relationships between TCSs, which indicate noncognate inducers for various response regulators, such as BaeR to iron starvation, CpxR to phosphate limitation, and PhoB and ZraR to cell envelope stress. Our understanding of the TRN in E. coli is thus notably expanded. IMPORTANCE E. coli is a common commensal microbe found in the human gut microenvironment; however, some strains cause diseases like diarrhea, urinary tract infections, and meningitis. E. coli’s two-component systems (TCSs) modulate target gene expression, especially related to virulence, pathogenesis, and antimicrobial peptides, in response to environmental stimuli. Thus, it is of utmost importance to understand the transcriptional regulation of TCSs to infer bacterial environmental adaptation and disease pathogenicity. Utilizing a combinatorial approach integrating RNA sequencing (RNA-seq), independent component analysis, chromatin immunoprecipitation coupled with exonuclease treatment (ChIP-exo), and data mining, we suggest five different modes of TCS transcriptional regulation. Our data further highlight noncognate inducers of TCSs, which emphasizes the cross-regulatory nature of TCSs in E. coli and suggests that TCSs may have a role beyond their cognate functionalities. In summary, these results can lead to an understanding of the metabolic capabilities of bacteria and correctly predict complex phenotype under diverse conditions, especially when further incorporated with genome-scale metabolic models.


2000 ◽  
Vol 182 (8) ◽  
pp. 2068-2076 ◽  
Author(s):  
Dagmar Beier ◽  
Rainer Frank

ABSTRACT Two-component systems are frequently involved in the adaptation of bacteria to changing environmental conditions at the level of transcriptional regulation. Here we report the characterization of members of the two-component systems of the gastric pathogenHelicobacter pylori deduced from the genome sequence of strain 26695. We demonstrate that the response regulators HP166, HP1043, and HP1021 have essential functions, as disruption of the corresponding genes is lethal for the bacteria, irrespective of the fact that HP1043 and HP1021 have nonconserved substitutions in crucial amino acids of their receiver domains. An analysis of the in vitro phosphorylation properties of the two-component proteins demonstrates that HP244-HP703 and HP165-HP166 are cognate histidine kinase-response regulator pairs. Furthermore, we provide evidence that the variability of the histidine kinase HP165 caused by a poly(C) tract of variable length close to the 3′ end of open reading frame 165/164 does not interfere with the kinase activity of the transmitter domain of HP165.


2020 ◽  
Vol 65 (3) ◽  
Author(s):  
Annie I. Chen ◽  
Francisco Javier Albicoro ◽  
Jun Zhu ◽  
Mark Goulian

ABSTRACT Polymyxins are a class of cyclic peptides with antimicrobial activity against Gram-negative bacteria. In Enterobacteriaceae, the PhoQ/PhoP and PmrB/PmrA two-component systems regulate many genes that confer resistance to both polymyxins and host antimicrobial peptides. The activities of these two-component systems are modulated by additional proteins that are conserved across Enterobacteriaceae, such as MgrB, a negative regulator of PhoQ, and PmrD, a “connector” protein that activates PmrB/PmrA in response to PhoQ/PhoP stimulation. Despite the conservation of many protein components of the PhoQ/PhoP-PmrD-PmrB/PmrA network, the specific molecular interactions and regulatory mechanisms vary across different genera. Here, we explore the role of PmrD in modulating this signaling network in Klebsiella pneumoniae and Escherichia coli. We show that in K. pneumoniae, PmrD is not required for polymyxin resistance arising from mutation of mgrB—the most common cause of spontaneous polymyxin resistance in this bacterium—suggesting that direct activation of polymyxin resistance genes by PhoQ/PhoP plays a critical role in this resistance pathway. However, for conditions of low pH or intermediate iron concentrations, both of which stimulate PmrB/PmrA, we find that PmrD does contribute to resistance. We further show that in E. coli, PmrD functions as a connector between PhoQ/PhoP and PmrB/PmrA, in contrast with previous reports. In this case, activity also depends on PmrB/PmrA stimulation, or on very high activation of PhoQ/PhoP. Our results indicate that the importance of the PmrD connector in modulating the polymyxin resistance network depends on both the network organization and on the environmental conditions associated with PmrB stimulation.


2016 ◽  
Vol 24 (1) ◽  
Author(s):  
Elizabeth Diago-Navarro ◽  
Isabel Calatayud-Baselga ◽  
Donglei Sun ◽  
Camille Khairallah ◽  
Inderjit Mann ◽  
...  

ABSTRACT Hypervirulent Klebsiella pneumoniae (hvKp) strains are predicted to become a major threat in Asia if antibiotic resistance continues to spread. Anticapsular antibodies (Abs) were developed because disseminated infections caused by hvKp are associated with significant morbidity and mortality, even with antibiotic-sensitive strains. K1-serotype polysaccharide capsules (K1-CPS) are expressed by the majority of hvKp strains. In this study, K1-CPS-specific IgG Abs were generated by conjugation of K1-CPS to immunogenic anthrax protective antigen (PA) protein. Opsonophagocytic efficacy was measured in vitro and in vivo by intravital microscopy in murine livers. In vivo protection was tested in murine models, including a novel model for dissemination in hvKp-colonized mice. Protective efficacy of monoclonal antibodies (MAbs) 4C5 (IgG1) and 19A10 (IgG3) was demonstrated both in murine sepsis and pulmonary infection. In hvKp-colonized mice, MAb treatment significantly decreased dissemination of hvKp from the gut to mesenteric lymph nodes and organs. Intravital microscopy confirmed efficient opsonophagocytosis and clearance of bacteria from the liver. In vitro studies demonstrate that MAbs work predominantly by promoting FcR-mediated phagocytosis but also indicate that MAbs enhance the release of neutrophil extracellular traps (NETs). In anticipation of increasing antibiotic resistance, we propose further development of these and other Klebsiella-specific MAbs for therapeutic use.


2018 ◽  
Vol 86 (7) ◽  
Author(s):  
Liwen Deng ◽  
Rong Mu ◽  
Thomas A. Weston ◽  
Brady L. Spencer ◽  
Roxanne P. Liles ◽  
...  

ABSTRACTStreptococcus agalactiae(group BStreptococcus[GBS]) is often a commensal bacterium that colonizes healthy adults asymptomatically and is a frequent inhabitant of the vaginal tract in women. However, in immunocompromised individuals, particularly the newborn, GBS may transition to an invasive pathogen and cause serious disease. Despite the use of the currently recommended intrapartum antibiotic prophylaxis for GBS-positive mothers, GBS remains a leading cause of neonatal septicemia and meningitis. To adapt to the various host environments encountered during its disease cycle, GBS possesses multiple two-component regulatory systems (TCSs). Here we investigated the contribution of a transcriptional regulator containing a LytTR domain, LtdR, to GBS pathogenesis. Disruption of theltdRgene in the GBS chromosome resulted in a significant increase in bacterial invasion into human cerebral microvascular endothelial cells (hCMEC)in vitroas well as the greater penetration of the blood-brain barrier (BBB) and the development of meningitisin vivo. Correspondingly, infection of hCMEC with the ΔltdRmutant resulted in increased secretion of the proinflammatory cytokines interleukin-8 (IL-8), CXCL-1, and IL-6. Further, using a mouse model of GBS vaginal colonization, we observed that the ΔltdRmutant was cleared more readily from the vaginal tract and also that infection with the ΔltdRmutant resulted in increased cytokine production from human vaginal epithelial cells. RNA sequencing revealed global transcriptional differences between the ΔltdRmutant and the parental wild-type GBS strain. These results suggest that LtdR regulates many bacterial processes that can influence GBS-host interactions to promote both bacterial persistence and disease progression.


Sign in / Sign up

Export Citation Format

Share Document